CNN卷积神经网络的理解

        机器学习的两大部分:浅层学习(shallow learning)和深度学习(deep learning),两者的主要区别是:浅层学习(如SVM、BP、AdaBoost等)的输入都是人工规则提取的特征;而深度学习是用CNN提取深层次的特征,然后将这些特征作为分类器(如SVM、BP、AdaBoost等)的输入。

    深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。(引用)
    区别于传统的浅层学习,深度学习的不同在于:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值