机器学习的两大部分:浅层学习(shallow learning)和深度学习(deep learning),两者的主要区别是:浅层学习(如SVM、BP、AdaBoost等)的输入都是人工规则提取的特征;而深度学习是用CNN提取深层次的特征,然后将这些特征作为分类器(如SVM、BP、AdaBoost等)的输入。
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。(引用)
区别于传统的浅层学习,深度学习的不同在于: