关闭

张志华教授《机器学习导论》和《统计机器学习》课程讲义

标签: 机器学习导论统计机器学习深度学习上海交大张志华课程讲义
9049人阅读 评论(17) 收藏 举报
分类:

张志华教授《机器学习导论》和《统计机器学习》课程讲义

尊重原创,转载请注明出处http://blog.csdn.net/guyuealian/article/details/53672487 
     最近看了上海交大张志华教授的精品课程 《机器学习导论》和《统计机器学习》,觉得讲的很深入,适合学习机器学习和深度学习的研究者深入学习,张教授讲的比较偏向理论,需要一定的数学基础。
    至于广大网友最关心的课程讲义和配套教材书籍,后来鄙人邮件详问过张志华教授,他说“目前只有学生记录下来的讲义,没有专门的教材”,张教授还好心留下讲义的下载链接:http://bcmi.sjtu.edu.cn/log/courses.html ,这也是他的个人主页,讲义不一定完全配套视频,自己且看且将就着用吧。

    PS:鄙人并非上海交大的学生,所以也不清楚交大同学们现在用什么教程和讲义,如果交大的网友看见此文,希望能告知相关内容,方面我们相互学习,拜托了~!
     张教授的简历请见:http://www.cs.sjtu.edu.cn/PeopleDetail.aspx?id=68 
一、《机器学习导论》
课程视频:http://ocw.sjtu.edu.cn/G2S/OCW/cn/CourseDetails.htm?Id=397
或者到云盘下载: http://pan.baidu.com/s/1miuJwDU 密码: ab8e
课程目录:
01. 基本概念
02. 随机向量
03. 随机向量的性质
04. 条件期望
05. 多元高斯分布
06. 分布的性质
07. 多元高斯分布及其运用
08. 多项式分布
09. 渐进性质
10. 核定义
11. 正定核性质
12. 正定核应用
13. 主元分析
14. 主坐标分析
15.  核主元分析
16. 概率PCA
17. 最大似然估计方法
18. 期望最大算法
19. EM算法的收敛性
20. MDS方法
21. MDS中加点方法
22. T矩阵范式
23. 次导数
24. 矩阵次导数
25. Matrix_Completion
26. K_means algorithm
27. spectral clustering
28. 谱聚类1
29. 谱聚类2
30. Fisher判别分析
31. Fisher Discriminant Analysis
32. computational Methods1
33. computational Methods2
34. Kernel FDA
35. Linear classification1
36. Linear classification2
37. Naive Bayes 方法
38. Support Vector Machinese1
39. Support Vector Machinese2
40. SVM 
41. Boosting1
42. Boosting2

二、《统计机器学习
课程视频:http://ocw.sjtu.edu.cn/G2S/OCW/cn/CourseDetails.htm?Id=398
或者到云盘下载: 链接: http://pan.baidu.com/s/1i5iEpnR 密码: wct9
课程目录:
01. 概率基础
02. 随机变量1
03. 随机变量2
04. 高斯分布
05. 连续分布
06. 例子
07. scale mixture pisribarin
08. jeffrey prior
09. statistic interence
10. Laplace 变换
11. 多元分布定义
12. 概率变换
13. jacobian
14. wedge production
15. 统计量
16. 多元正态分布
17. Wishart 分布
18. 矩阵元Beta分布
19. 统计量 充分统计量
20. 指数值分布
21. 共轭先验性质
22. Entropy
23. KL distance
24. properties
25. 概率不等式1
26. 概率不等式2
27. 概率不等式1
28. 概率不等式2
29. 概率不等式3
30. 概率不等式
31. 随机投影
32. John引理
33. Stochastic Convergence-概念
34. Stochastic Convergence-性质
35. Stochastic Convergence-应用
36. EM算法1
37. EM算法
38. EM算法3
39. Markov Chain Monte carlo1
40. Markov Chain Monte carlo2
41. Bayesian Classification
如果你觉得该帖子帮到你,还望贵人多多支持,鄙人会再接再厉,继续努力的~

9
0
查看评论

机器学习导论中文版

  • 2015-08-26 10:43
  • 30.82MB
  • 下载

机器学习导论总结

绪论 今天开始重新看一篇机器学习导论,相信有了做研究的一些经验,能更好的得到更加深入的理解。 1. 什么是机器学习? 生活中我们的经验告诉我们, 数据是存在某种确定的模式的。机器学习使用实例数据或者过去的经验训练计算机,以优化某种性能标准。训练数据就是优化依赖于某些参数的模型。模型可以...
  • yangjingyi0730
  • yangjingyi0730
  • 2017-06-25 16:29
  • 385

机器学习导论

说明:由于这里讲的是导论所以不对具体算法进行阐述1.机器学习背景机器学习可谓是当今CS最火的研究领域,其研究的核心内容就是通过学习算法,使机器学会自己学习。使得程序员正真从变化的问题中解放出来,以不变应万变,让机器从现有的数据中发现规律,从而应用于实际问题,比如机器人控制,医疗诊断,基因研究等领域。...
  • qq_27792379
  • qq_27792379
  • 2016-01-19 22:01
  • 521

《机器学习导论》和《统计机器学习》学习资料:张志华教授

张志华教授的两门机器学习公开课是很好的机器学习资源。但在上海交大的公开课视频网站上挂出的教学视频顺序有点乱。对于初学者来说,如果没看对顺序的话,会觉得讲得很乱,从而错过这么优质的资源。事实上板书很完整,有电子版讲义可下载。只是讲义上有个别地方有点笔误,但不影响理解。能用黑板直接推导的老师的逻辑和思路...
  • guyuealian
  • guyuealian
  • 2016-12-13 09:25
  • 3854

机器学习导论习题答案Ethem Alpaydin

  • 2015-11-23 17:18
  • 508KB
  • 下载

机器学习导论第二版(中文)

  • 2017-10-19 11:19
  • 59.36MB
  • 下载

机器学习导论.第二版.带书签

  • 2017-05-04 09:26
  • 77.76MB
  • 下载

机器学习导论

  • 2013-09-13 13:19
  • 30.82MB
  • 下载

机器学习导论

在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是 EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。 在进入正题前...
  • xwchao2014
  • xwchao2014
  • 2015-05-04 16:07
  • 798

机器学习导论

  • 2014-05-27 20:08
  • 30.82MB
  • 下载
    个人资料
    • 访问:559717次
    • 积分:5941
    • 等级:
    • 排名:第5135名
    • 原创:107篇
    • 转载:51篇
    • 译文:1篇
    • 评论:175条
    博客专栏
    最新评论