
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/guyuealian/article/details/53708042
聚类算法-最大最小距离算法(实例+代码)
一、最大最小距离算法基本思想
该算法以欧氏距离为基础,首先初始一个样本对象作为第1个聚类中心,再选择一个与第1个聚类中心最远的样本作为第2个聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。
二、算法实现步骤
该算法的聚类结果与参数和起始点的选取关系重大。若无先验样本分布知识,则只有用试探法通过多次试探优化,若有先验知识用于指导和选取,则算法可很快收敛。
clear all clc x=[0,0; 3,8; 2,2;1,1; 5,3; 4,8; 6,3; 5,4; 6,4; 7,5] Theta=0.5; pattern=MaxMinDisFun(x,0.5)
%%%%%%%%%%%%%%%%% %函数名称 MaxMinDisFun(x,Theta) %输入参数: % x : x为n*m的特征样本矩阵,每行为一个样本,每列为样本的特征 % Theta:即θ,可用试探法取一固定分数,如:1/2 %输出参数: % pattern:输出聚类分析后的样本类别 %函数功能 :利用最大最小距离算法聚类样本数据, %%%%%%%%%%%%%%%%%%%%% function [pattern]=MaxMinDisFun(x,Theta) maxDistance=0; index=1;%相当于指针指示新中心点的位置 k=1; %中心点计数,也即是类别 center=zeros(size(x)); %保存中心点 patternNum=size(x,1); %输入的数据数(样本数) %distance=zeros(patternNum,3);%distance每列表示所有样本到每个聚类中心的距离 minDistance=zeros(patternNum,1);%取较小距离 pattern=(patternNum);%表示类别 center(1,:)=x(1,:);%第一个聚类中心 pattern(1)=1; for i=2:patternNum distance(i,1)=sqrt((x(i,:)-center(1,:))*(x(i,:)-center(1,:))');%欧氏距离,与第1个聚类中心的距离 minDistance(i,1)=distance(i,1); pattern(i)=1;%第一类 if(maxDistance<distance(i,1)) maxDistance=distance(i,1);%与第一个聚类中心的最大距离 index=i;%与第一个聚类中心距离最大的样本 end end k=k+1; center(k,:)=x(index,:);%把与第一个聚类中心距离最大的样本作为第二 个聚类中心 pattern(index)=2;%第二类 minDistance(index,1)=0; while 1 for i=2:patternNum if(minDistance(i,1)~=0) distance(i,k)=sqrt((x(i,:)-center(k,:))*(x(i,:)-center(k,:))');%与第k个聚类中心的距离 if(minDistance(i,1)>distance(i,k)) minDistance(i,1)=distance(i,k); pattern(i)=k; end end end max=0; for i=2:patternNum if((max<minDistance(i,1))&minDistance(i,1)~=0) % (x(i,:)~=center(k,:)) max=minDistance(i,1); index=i; end end if(max>(maxDistance*Theta)) k=k+1; center(k,:)=x(index,:); pattern(index)=k; minDistance(index,1)=0; else break; end end
// MaxMinDisTest.cpp : #include "stdafx.h" #include <iostream> #include <math.h> using namespace std; const int N=10; void main(void) { int center[20]; float s[2][N]={{0,3,2,1,5,4,6,5,6,7}, {0,8,2,1,3,8,3,4,4,5}}; float D[20][N]; float min[N]; int minindex[N]; int clas[N]; float theshold; float theta=0.5; float D12=0.0; float tmp=0; int index=0; center[0]=0;//first center int i,k=0,j,l; for(j=0;j<N;j++) { tmp=(s[0][j]-s[0][0])*(s[0][j]-s[0][0])+(s[1][j]-s[1][0])*(s[1][j]-s[1][0]); D[0][j]=(float)sqrt(tmp); if(D[0][j]>D12) {D12=D[0][j];index=j;} } center[1]=index;//second center k=1; index=0; theshold=D12; while(theshold>theta*D12){ for(j=0;j<N;j++){ tmp=(s[0][j]-s[0][center[k]])*(s[0][j]-s[0][center[k]])+ (s[1][j]-s[1][center[k]])*(s[1][j]-s[1][center[k]]); D[k][j]=(float)sqrt(tmp);} for(j=0;j<N;j++){ float tmp=D12; for(l=0;l<=k;l++) if (D[l][j]<tmp) {tmp=D[l][j];index=l;}; min[j]=tmp;minindex[j]=index; }//min-operate float max=0;index=0; for(j=0;j<N;j++) if(min[j]>max) {max=min[j];index=j;} if (max>theta*D12){k++;center[k]=index;}// add a center theshold=max;// prepare to loop next time } //求出所有中心,final array min[] is still useful for(j=0;j<N;j++) clas[j]=minindex[j]; for(i=0;i<2;i++) {for(j=0;j<N;j++) cout<<s[i][j]<<" "; cout<<"\n"; } cout<<"k="<<k+1<<" "; cout<<"center(s):"; for(l=0;l<k;l++) cout<<center[l]+1<<"--";cout<<center[k]+1; cout<<"\n"; for(j=0;j<N;j++) cout<<clas[j]+1<<" "; cout<<"\n"; }
- 上一篇 张志华教授《机器学习导论》和《统计机器学习》课程讲义
- 下一篇 协方差矩阵的几何解释