基于用户行为数据进行持续的产品创新

James Surowiecki的研究揭示了消费者在面对不同复杂度的数字设备时的选择偏好与最终使用体验之间的矛盾。文章探讨了产品开发中关于功能与用户体验的权衡,以及如何通过观察用户行为而非仅仅依赖口头反馈来获取产品设计的宝贵见解。通过亚马逊等公司的案例研究,强调了实验性方法和用户行为数据分析在推动创新和优化产品设计中的关键作用。

James Surowiecki是《群体的智慧》一书的作者。他在《纽约客》杂志的一个栏目里提到了“复杂性与用户选择之间的矛盾”:

有三位市场专业学者最近发表了一份研究报告,他们发现:当给予消费者某个数字设备的三款复杂度不一的型号时,超过60%的人选择了功能最多的那款。然后,当他们被赋予机会去从25个功能里选出一些来定制他们的产品时,他们表现得像置身于糖果店的小孩一样。(平均而言,他们每人选了20个。)但是,当他们被要求使用这个数字设备时,传说中的“功能疲劳症”便发作了。他们因为自己创造出来的过多选项而困扰不已,以致于他们最后承认:如果能使用简单一点的产品,他们会更开心。

当你在开发一个怪物似的产品时,你是意识不到的——直到有一天你去尝试使用它,你才恍然大悟。我把它称之为吃自助餐时的“食量”问题。当你非常饥饿的时候,看到面前这么多美味的食物可供选择,你很自然地会把自己的盘子装得满满的。但当坐到位置上时,你这才意识到,你绝不可能吃掉所有的食物。

平心而论,有时候人们确实需要复杂。谷歌的韩国首页就被故意设计得有点复杂。谷歌的Marissa Mayer解释道,“在我们一贯追求的简约主义不适用的场合,我们会灵活应变——这么做是很重要的!”


这在DonaldNorman早些时候的一篇博客中得到了印证。他说,韩国人在奢侈品消费方面钟情于复杂的东西:

最近,我在韩国的一家百货商店逛了一逛。每当我到访一个以前从未去过的国家,我总把逛百货商店和当地市场作为最好的消遣之一;这样我就能更好地了解当地的文化。食物不一样,服饰不一样;在过去,器具也不一样:家电、厨房用具、园艺工具、购物工具等等。

我发现,传统的“白色家电”(冰箱和洗衣机)是最有趣的。毫无疑问,商店里有韩国当地的品牌,比如LG和三星,但也有像通用电气、博朗、飞利浦这样的国际品牌。在规格和价格一样的前提下,韩国当地的产品看起来都比外来品牌的产品更加复杂。为什么呢?我问了两位“导游”——他们都是可用性方面的专家。他们的解释是,“因为韩国人喜欢让东西看起来复杂一点。”那是一种象征,表明了他们的身份。

James Surowiecki引用的研究报告,恰恰说明了人们口头表达的欲望与他们内心真正的所欲之物之间的差别。你会发现,这个问题在可用性范畴里一次又一次地被反应出来:用户口述的他们想做的事情,与他们实际的所作所为相比,往往天差地别。从可用性的角度讲,询问用户他们想要什么几乎是徒劳的,原因就在这里——你必须观察他们真正做了些什么。这就是“可用性测试”。与其询问用户他们想要数码相机的什么功能,正确的做法应该是:把几个数码相机的原型摆在他们面前,然后观察他们是怎么使用的。用户摆弄原型机的过程中传递出来的信息(成功也好,失败也罢),比1000份问卷调查或小组讨论的产出更有价值。遗憾的是,制作数码相机原型的费用过于昂贵,因此也没人真的这么做。

然而,制作软件的原型(纯粹是脑力劳动的产物),相比之下要容易得多。Dare Obasanjo最近提到了一篇很棒的文章,标题为“Practical Guide to Controlled Experiments on the Web”(网上可控实验的实用指南),为基于观察的A/B测试进行了有力的辩护:

亚马逊公司的Greg Linden创建了一个原型,展示了基于购物车里的商品进行个性化推荐的功能。它是这么工作的:你往购物车里加入一件商品,更多的推荐商品随即展示在你眼前;你再添加一件商品,所推荐的商品也随之变化。据Greg所说,尽管原型程序看起来很有前景,但市场部门的一位高级副总裁极力反对,宣称那样会在结账的时候分散人们的注意力。Greg被勒令停止这方面的工作。然而,Greg做了一个可控的实验,结果这个功能为公司赢得了很大的利润,以致于如果关闭它会显著影响到亚马逊的营收。情急之下,基于购物车的推荐功能正式发布了。自那以后,多个网站“抄袭”了这种购物车推荐功能。

亚马逊的实验文化(数据胜于直觉)以及一套易于做实验的系统,使得亚马逊能够快速而有效地进行创新。

如果你能轻松地把基于购物车的推荐功能开放给一半的用户,然后观察其效果,何必还要去询问用户他们是否喜欢这个功能呢?网站应用特别适合这种观察测试,因为在服务器端通过一系列的HTTP请求来收集用户行为数据,这做起来很容易。通过这种方式,你甚至不必真的去现场“观察”用户。即使你是在开发传统的桌面应用程序,只要费点心,你也可以做同样的数据分析。Jensen Harris讲述了微软是如何在Office 2003里收集用户行为数据的:

假如你想知道Office 2000的哪些功能人们用得最多。好吧,你只能去问一个“专家”——他已经用这个产品用了很长时间。专家说,“所有人都用AutoText用得很多。”专家的声音越高,他们的意见就越有价值。然后,你就会听到这种奇闻异事,“圣诞节的时候我待在家里,看到我妈在使用普通视图……也许大部分新手都这么用吧。”专家还会提出一些帮助性的建议,“我听百思买的一个家伙说,大部分人都使用多个显示器。”

SQM代表Service Quality Monitoring(服务质量监控),它只是一个内部名字,而在公司以外就是大家熟知的“客户体验改善计划”。它是这样工作的:Office 2003的用户有机会选择参加这个计划;从这些人中,我们匿名收集无法逆向追查的数据——这些数据具体描述了软件是怎么被使用的,以及在什么样的硬件上被使用。(当然,我们不会收集任何个人身份信息。)

作为设计师,我们定义了我们有兴趣了解的数据点。为了收集这些数据,软件做了专门的“插桩”。所有收集回来的数据聚合在一个巨大的服务器上,然后像我这样的人会去使用这些数据,以辅助某些决策。

我们收集什么样的数据呢?实际上,从用户执行了什么命令及其使用频率,到他们有多少个Outlook邮箱目录,我们无所不知。我们知道你使用什么快捷键。我们知道你在“日历”上花费多少时间,以及你是否定制了工具条。简而言之,只要不危及用户的隐私,我们会收集所有我们感兴趣并且有用的信息。

这听起来有点古怪——他们像黑社会老大一样——但是,SQM不过是把任何Web应用程序都能轻松“享用”的报告机制扩展到桌面应用程序而已。

这种数据的真正威力在于,你可以在远程悄悄地“观察”用户,搞明白他们在用你的软件做什么;这个过程还是自动的。现在,你就能回答像“Word 2003里用得最多的5个命令是什么?”这样的问题了。答案可能会让你吃惊哦!你知道吗,你的应用程序里最常被使用的5个功能是什么?

请别误会!我热爱用户。我的好朋友中有一些就来自于用户。但就像我们所有人一样,他们是靠不住的(尽一切努力也无济于事)。在可用性方面,为了超越靠猜测行事,你必须去观察用户如何使用你的软件,除此之外别无他法!在做设计的时候,如果能基于用户对你的软件的实际使用方式来做决定(而不是基于他们口述的或者你自己想象中的使用方式),岂不是更合理?不管你是在“低保真的可用性测试”中观察用户,还是收集用户行为数据、然后在无形之中观察用户,宗旨是一样的:别问,须观察!

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值