1691人阅读 评论(0)

# 16-python opencv 进行简单几何变换

• 放大
• 缩小
• 平移
• 旋转

## 实现过程

### 读取原图并显示

import cv2
import numpy as np

cv2.imshow('original', img)

### 放大

cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst

• src – input image.
• dst – output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src.
• dsize –output image size; if it equals zero, it is computed as:
dsize = Size(round(fx × src.cols), round(fy × src.rows))
• fx –scale factor along the horizontal axis; when it equals 0, it is computed as
• fy –scale factor along the vertical axis; when it equals 0, it is computed as
• interpolation –interpolation method:

INTER_NEAREST a nearest-neighbor interpolation
INTER_LINEAR a bilinear interpolation (used by default)
INTER_AREA resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
INTER_CUBIC a bicubic interpolation over 4x4 pixel neighborhood
INTER_LANCZOS4 a Lanczos interpolation over 8x8 pixel neighborhood

# expand
rows, cols, channels = img.shape
img_ex = cv2.resize(img, (2*cols, 2*rows), interpolation=cv2.INTER_CUBIC)
cv2.imshow('expand', img_ex)

### 缩小

# zoom
img_zo = cv2.resize(img, (cols/2, rows/2), interpolation=cv2.INTER_AREA)
cv2.imshow('zoom', img_zo)

### 平移

[1001txty](4)

$tx $和$ ty$分别为向右和向下平移的距离。这里我们利用np.array()创建这个矩阵，然后调用warpAffine来实现这个变换，并保持图像的大小不变。

# trans
M = np.array([[1, 0, 50],[0, 1, 50]], np.float32)
img_tr =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('trans', img_tr)

cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) → dst

• src – input image.
• dst – output image that has the size dsize and the same type as src .
• M – 2 × 3 transformation matrix.
• dsize – size of the output image.
• flags – combination of interpolation methods (see resize() ) and the optional flag WARP_INVERSE_MAP that means that M is the inverse transformation.
• borderMode – pixel extrapolation method (see borderInterpolate()); when borderMode=BORDER_TRANSPARENT , it means that the pixels in the destination image corresponding to the “outliers” in the source image are not modified by the function.
• borderValue – value used in case of a constant border; by default, it is 0.

### 旋转

cv2.getRotationMatrix2D(center, angle, scale) → retval

• center – Center of the rotation in the source image.
• angle – Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).
• scale – Isotropic scale factor.
• retval – The output affine transformation, 2x3 floating-point matrix.

# Rotation
M=cv2.getRotationMatrix2D((cols/2,rows/2), 45, 1)
img_ro =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('rotation', img_ro)

## 源代码

# created by Huang Lu
# 2016/8/26 17:35
# Department of EE, Tsinghua Univ.

import cv2
import numpy as np

cv2.imshow('original', img)

# expand
rows, cols, channels = img.shape
img_ex = cv2.resize(img, (2*cols, 2*rows), interpolation=cv2.INTER_CUBIC)
cv2.imshow('expand', img_ex)

# zoom
img_zo = cv2.resize(img, (cols/2, rows/2), interpolation=cv2.INTER_AREA)
cv2.imshow('zoom', img_zo)

# trans
M = np.array([[1, 0, 50],[0, 1, 50]], np.float32)
img_tr =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('trans', img_tr)

# Rotation
M=cv2.getRotationMatrix2D((cols/2,rows/2), 45, 1)
img_ro =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('rotation', img_ro)

# wait the key and close windows
cv2.waitKey(0)
cv2.destroyAllWindows()

## 参考

1
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：40969次
• 积分：617
• 等级：
• 排名：千里之外
• 原创：22篇
• 转载：1篇
• 译文：0篇
• 评论：5条
文章分类
文章存档
评论排行
最新评论