elasticsearch数据备份与还原恢复

elasticsearch数据备份与还原恢复



1.在浏览器中运行http://ipaddress:9200/_flush,这样确保索引数据能保存到硬盘中。


2.原数据的备份。主要是elasticsearch数据目录下的nodes目录的备份。nodes目录为索引数据目录。


3.将原集群中的每个elasticsearch节点下的data目录拷贝至新的elasticsearch数据目录下。

4 利用快照来备份还原。

下面是备份及还原的脚本,分别存成 esback.sh,esrestore.sh,并 chmod 777 esback.sh.给予执行权限

脚本如下:

-----自动备份elasticsearch数据并压缩---
#!/bin/bash
filename=`date +%Y%m%d%H`
backesFile=es$filename.tar.gz
cd /home/elasticsearch/back
mkdir es_dump
cd es_dump
curl -XDELETE 192.168.1.7:9200/_snapshot/backup/$filename?pretty
echo 'sleep 30'
sleep 30
curl -XPUT 192.168.1.7:9200/_snapshot/backup/$filename?wait_for_completion=true&pretty
echo 'sleep 30'
sleep 30
cp /home/elasticsearch/snapshot/* /home/elasticsearch/back/es_dump -rf
cd ..
tar czf $backesFile  es_dump/
rm es_dump -rf 


-----自动解压并还原elasticsearch数据---
#!/bin/bash
filename='2015040314'
backesFile=es$filename.tar.gz
cd /home/elasticsearch/back
tar zxvf $backesFile
rm /home/elasticsearch/snapshot/* -rf
cp /home/elasticsearch/back/es_dump/* /home/elasticsearch/snapshot -rf


curl -XPOST 192.168.1.7:9200/users/_close
curl -XPOST 192.168.1.7:9200/products/_close
echo 'sleep 5'
sleep 5
curl -XPOST 192.168.1.7:9200/_snapshot/backup/$filename/_restore?pretty -d '{
"indices":"users"
}' 
echo 'sleep 5'
sleep 5
curl -XPOST 192.168.1.7:9200/_snapshot/backup/$filename/_restore?pretty -d '{
"indices":"products"
}'
echo 'sleep 5'
sleep 5
curl -XPOST 192.168.1.7:9200/users/_open
curl -XPOST 192.168.1.7:9200/products/_open 
rm es_dump -rf 

---end----

备份的脚本有几个前提条件

1 先创建快照存储库

--创建快照存储库 backup--


curl -XPUT 192.168.1.7:9200/_snapshot/backup -d '
{
"type":"fs",
"settings":{"location":"/home/elasticsearch/snapshot"}
}'

且/home/elasticsearch/snapshot 该目录要有权限

备份目录  /home/elasticsearch/back要先建好

还原的时候是按索引来分别还原的,可改成需要的方式

内容概要:本文档详细介绍了 DEEP SEEK 的本地部署及其与私有知识库整合的具体步骤。主要包括两大部分:Ollama 平台的使用方法和 DeepSeek R1 模型的安装指导。Ollama 是一种能够便捷部署深度学习模型(尤其是大型语言模型)的工具,它支持多种操作系统并在命令行中执行相应操作以完成从下载、配置直至实际使用的全过程。文中针对不同硬件条件给出了具体配置推荐,并逐步讲解了从安装 Ollama 到运行特定大小版本 DeepSeek 模型(如 1.5b 至 70b),再到设置 API 键连接云端服务以及最后利用 Cherry Studio 构建个人专属的知识库的一系列操作指南。同时附上了多个辅助资源如视频教程、在线演示平台链接以便更好地理解和学习整个过程。 适合人群:适合有一定技术背景且想探索本地部署人工智能模型的初学者或是希望通过本地化部署提高效率的研发团队。 使用场景及目标:一是帮助用户了解并掌握在本地环境中配置高性能 AI 工具的全流程操作;二是使用户能够根据自己拥有的计算资源情况合理挑选合适的模型大小;三是通过集成私有知识库为企业内部提供定制化的问答或咨询系统,保护敏感数据不受公开访问威胁。 其他说明:考虑到安全性和稳定性因素,作者还提供了应对潜在风险如遭遇网络攻击时选用可靠替代源——硅基流动性 API 来保障服务持续稳定运作,并强调在整个实施过程中应谨慎处理个人信息及企业关键资产以防泄露事件发生。此外,提到对于更高级的功能例如基于 Ollama 实现本地知识库还有待进一步探讨和发展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值