Python机器视觉编程环境搭建方法

原创 2016年05月30日 22:06:00


Python机器视觉编程环境搭建方法


1. Why Python


C/C++

早期的计算机视觉领域大多数程序都是用C/C++编写。随着计算机硬件速度越来越快,开源平台越来越多,开发者选择计算机视觉算法的实现语言变得更加灵活,代码编写的效率和易用性成为选择编写语言时的考虑因素,而不再仅仅只考虑执行效率。

Python

Python的跨平台、开放性、易用性,加之丰富的资源使其成为近年来越来越多开发者的选择。国外出版了大量的Python编程、学习书籍,亚马逊搜索Python图书,结果列表长达100页共5712本(截止2016年5月28日)。你也可以从诸如Coursera或Edx等mooc平台找到像MIT校长讲授的Python入门等课程。国内也引进了许多优秀的学习资料和许多在线课程。除了这些学习资料,更重要的是Python自带很多可免费获取的强大而便捷的图像处理、数学计算和数据挖掘模块和丰富的其他网络资源。

本文以windows平台为例,介绍使用Python进行计算机视觉编程的开发环境搭建与基本配置,总结了软件下载地址、安装方法和开发环境搭建的基本方法,并提供了简单的代码示例。想说的是,Python安装方法与系统、软件版本等诸多因素有关,要想一步到位比较难,遇到问题多种方式可以混合尝试。


2.下载安装软件包

Python机器视觉编程环境的常用配置如下:

  •   Python:Pyhton2.7或Python3.x
  •   pip:python的一个包管理器,安装后可方便的引入第三方库
  •   NumPy:该模块用于python计算机视觉编程时的向量、矩阵的表示与操作
  •   SciPy:更高级的数学计算模块
  •   Matplotlib:结果可视化模块
  •   PIL:Python的图像处理类库,提供通用的图像处理功能及大量基本图像操作
  •   LIBSVM:用于机器学习的开源库
  •   OpenCV:流行的开源机器视觉算法库,提供越来越多的Python接口,目前支持到Python2.7

2.1 Python


下载地址:

  • https://www.python.org/downloads/


版本选择:

选择Python2还是Pyhton3这是一个问题,我们需要知道的:

  • Python2用的人多,坑少,大多数第三方库目前都支持。
  • Python3重大改进,发展趋势。但有些第三方库目前还支持不到3.x。
  • Python3Python2有很多语法差异,并且不兼容2.x版本。

对初学者,可以先学Pyhton2.7,等第三方库支持较好了再学习Python3,也会比较快入手。

安装并添加环境变量:

下载与操作系统对应的版本,运行安装,这里选择默认安装路径C:\Python27。

然后添加Python的安装路径到系统环境变量PATH中:计算机->右键->属性->高级系统设置,系统环境变量后加“;”号,然后添加python2.7的路径,确定。

这样,命令行即可直接运行Pyhton,并查看版本信息



2.2 安装pip

pip是python中的一个包管理器,就是在电脑中自动安装、配制、卸载和升级软件包的工具组合。pip可以代替之前的easy_install,可方便的引入第三方库。

下载地址:

  • https://pypi.python.org/pypi/pip

目前最新版本为PIP-8.1.2。

安装并添加系统环境变量:

下载对pip-8.1.2.tar.gz压缩包,打开cmd,进入相应解压目录使用命令行安装。

例如,下载的是PIP-8.1.2.tar.gz压缩包,解压后得到pip-8.1.2文件夹。将该拷贝到Python安装目录C:\Python27下(不拷贝到这个文件夹也可以),打开cmd进入pip-8.1.2目录下运行:

python setup.py install


然后再次编辑系统环境变量,将C:\Python27\Scripts也添加到Path,这样可以方便的运行pip

有了pip可以在命令行使用 pip install  xxx 的方法方便的安装所需的第三方库,例如下面的NumPy和SciPy等第三方库了。


2.3 NumPy

NumPy(Numeric Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。

NumPy和SciPy都可以在http://www.scipy.org/scipylib/download.html下载。

下载地址:

  • https://sourceforge.net/projects/numpy/files/
  • https://sourceforge.net/projects/numpy/files/NumPy/1.9.2/numpy-1.9.2-win32-superpack-python2.7.exe/download

安装:

方法1:

下载源码,打开cmd,进入相应目录使用命令行安装

python setup.py install

方法2:

windows系统可以下载对应版本的.exe文件,如numpy-1.9.2-win32-superpack-python2.7.exe安装。

方法3:

使用pip直接安装NumPy

pip install numpy

可能会因为网速等原因安装不成功,多试几次。本机安装时试了两次装成功。


2.4 SciPy

SciPy (Scientific Computing Tools for Python) 是一款方便、易用的python的科学和工程计算工具包。它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等。

方法3:

同样也可以使用pip直接安装scipy

pip install scipy


2.5 PIL

PIL (Python Imaging Library) Python图像处理类库。提供了通用的图像处理功能,以及大量游泳的基本图像操作,如图像缩放、裁剪、色彩空间转换等。

下载地址:

  • http://www.pythonware.com/products/pil/

安装:

方法1:

下载源码,打开cmd,进入相应目录使用命令行安装

python setup.py install

方法2:

windows系统可下载.exe文件,如PIL-1.1.7.win32-py2.7.exe安装。注意PIL目前免费版支持到Python2.7。

方法3:

使用pip安装

pip install PIL

2.6 matplotlib

matplotlib是一个2维Pyhton跨平台交互式绘图库。

下载地址:

  • http://matplotlib.org/users/installing.html
  • https://pypi.python.org/pypi/matplotlib/

安装说明文档http://matplotlib.org/users/installing.html 提示在windows平台安装matplot需要安装相应版本的setuptools, numpy, python-dateutil, pytz, pyparsing, 和 cycler。具体下载地址在该页面下方有。本机只预先装了numpy,其他包可能在pip安装时自动下载安装了吧。大家可以先试试下面的方法2。

安装:

方法1:
使用pip离线安装.whl文件。将上述下载地址下载好的matplotlib-1.5.1-cp27-none-win32.whl拷入某文件夹<dir>
pip install  e:\教程\python\matplotlib \ matplotlib-1.5.1-cp27-none-win32.whl

方法2:

使用pip在线安装

pip install matplotlib


2.7 LIBSVM

LIbSVM是台湾同胞为世界机器学习的卓越贡献之一,目前支持Python, R, MATLAB, Perl, Ruby, Weka, CommonLISP, CLISP, Haskell, OCaml, LabVIEW, and PHP interfaces. C# .NET code and CUDA多种语言。

下载地址:

  • http://www.csie.ntu.edu.tw/~cjlin/libsvm/

下载LIBSVM软件包libsvm-3.21.zip文件

安装:

windows下安装python的LIBSVM模块及其艰难,请务必做好思想准备:windows下安装LIBSVM最常见问题出在libsvm.dll文件上,关键是要用正确版本的libsvm.dll文件替换windows下的libsvm.dll文件。

在尝试网上各种方法未果后,终于找到一个在本机环境下能用的方法,并且此方法比较简便,仅供大家参考。本机环境为:

  • 系统为win7 64位
  • 下载的LIBSVM版本是libsvm-3.21压缩包
  • python安装路径C:\Python27
  • Python版本:2.7.11 win32位

(1)将下载的libsvm-3.21压缩包解压到C盘根目录下(其他文件夹也可)

将libsvm-3.21解压到C:\libsvm-3.21\

(2)下载libsvm-3.21的.whl文件

到以下网址下载与自己Python版本对应的LIBSVM的.whl文件:

  • http://www.lfd.uci.edu/~gohlke/pythonlibs/#libsvm

拷贝到某目录,例如:e:\教程\python\Libsvm



(3)使用pip安装libsvm-3.21-cp27-none-win32.whl

运行cmd,使用pip安装上述.whl文件:

pip install  e:\教程\python\libsvm\libsvm-3.21-cp27-none-win32.whl

现在,符合本机环境和软件版本的LIBSVM就被存放到你python安装目录下的Lib\site-packages文件夹中,其中有一个\libsvm-3.21.dist-info文件夹,里面都是说明文件。

(4)将安装生成的libsvm.dll替换C:\libsvm-3.21\windows下的libsvm.dll

使用安装生成的C:\Python27\Lib\site-packages\下的libsvm.dll替换C:\libsvm-3.21\windows下的libsvm.dll。至此,libsvm.dll文件和你电脑的版本号完全对应,安装完成,本文在第3节测试安装。


本方法参考了下文:

  • http://www.mamicode.com/info-detail-1289587.html


2.8 OpenCV

OpenCV是业界最常用的开源机器视觉库,无需多介绍。目前OpenCV仅支持到Python2.7。

下载地址:

  • http://opencv.org/downloads.html

安装:

下载文件opencv-2.4.10.exe是一个自解压缩文件,将解压后的文件夹opencv->build->python->2.7->x86中的 cv2.pyd复制到:C:\Python27\Lib\site-packages 中即可。


3. 测试安装:示例程序


3.1 NumPy+PIL

Python IDLE GUI新建File,输入如下代码,保存后F5运行

from PIL import Image
pil_im =Image.open("f:/images/Lena.jpg").convert('L')
pil_im.show()

值得注意的是:

windows7下PythonPIL库show()函数显示图片有问题,解决方法是在将Python安装目录下的Lib/site-packages/PIL目录下的 ImageShow.py 文件的第 99 行进行替换:

将原

return "start /wait %s && del/f %s" % (file, file)

替换为

return "start /wait %s && PING127.0.0.1 -n 5 > NUL && del /f %s" % (file, file)  


替换后图片将使用windows图片查看器打开。


NumPy参考文档:

  • http://docs.scipy.org/doc/numpy/

PIL参考文档:

  • http://www.pythonware.com/library/pil/handbook/index.htm
  • http://effbot.org/imagingbook/

3.2 NumPy+Matplotlib

打开Python,File->New File,输入如下代码,保存,F5运行

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C,S = np.cos(X), np.sin(X)
plt.plot(X,C)
plt.plot(X,S)
plt.show()

更多示例参考:

  • http://www.labri.fr/perso/nrougier/teaching/matplotlib/

帮助文档:

  • http://matplotlib.org/contents.html
  • http://matplotlib.org/Matplotlib.pdf


3.3 LIBSVM

2.7节已经安装配置好了LIBSVM,打开IDLE (PythonGUI),新建一个文件,输入如下代码:

import os

os.chdir('C:\libsvm-3.21\python')
from svmutil import *

y, x = svm_read_problem('../heart_scale')
m = svm_train(y[:200], x[:200], '-c 4')
p_label, p_acc, p_val = svm_predict(y[200:], x[200:], m)

取个文件名(例如svmlib_test1.py)保存后,按F5运行,运行结果如下,说明安装成功

===================== RESTART:D:\Python\svmlib_test1.py =====================

Accuracy = 84.2857%(59/70) (classification)


3.4 OpenCV

打开解压后opencv文件夹中的source\samples\python

选择drawing.py右键->Edit with IDLE

如果没有问题应该看到变换的彩色条纹:


自己写个显示图像的例子,新建文件,输入代码

import cv2
im = cv2.imread("f:/images/Lena.jpg")
imGray = cv2.imread('f:/images/Lena.jpg',cv2.CV_LOAD_IMAGE_GRAYSCALE)
cv2.imshow("WinName",im)
cv2.imshow("Gray WinName",imGray)
cv2.waitKey()
保存,F5运行,结果如下


Python机器视觉编程环境搭建过程比较繁琐,每一步可能都有多种方法,也可能有各种问题,本文总结的是书上和网友给出的部分方法,难免疏漏,仅供参考。


转载请注明出处(本文更新链接):http://blog.csdn.net/iracer/article/details/51537020

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

通用系统的权限设计

通用设计

DIY一个基于树莓派和Python的无人机视觉跟踪系统

无人机通过图传将航拍到的图像存储并实时传送回地面站几乎已经是标配,如果想来点高级的——在无人机上直接处理拍摄的图像并实现自动控制要怎么实现呢?视觉跟踪已经在一些高端的消费级无人机上有了应用,不过玩现成...
  • iracer
  • iracer
  • 2017-02-02 21:26
  • 6563

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

机器学习(Machine Learning)&深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習、深度學習方面不錯的資料,轉載。 原作:https://github.co...

Python机器视觉编程常用数据结构与示例

本文总结了使用Python进行机器视觉(图像处理)编程时常用的数据结构,包括列表、元组以及NumPy数组(矩阵),给出了上述数据结构的基本方法,创建图像、访问像素、设置mask等操作的示例代码。
  • iracer
  • iracer
  • 2016-07-27 00:05
  • 2878

Python图像处理库Pillow入门

Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作...

DIY一个基于树莓派和Python的无人机视觉跟踪系统

DIY一个基于树莓派和Python的无人机视觉跟踪系统

从零开始搭建Raspberry Pi机器视觉编程环境

从零开始搭建Raspberry Pi机器视觉编程环境,包括安装Raspbian系统、设置网络、安装中文支持、远程连接方法、安装机器视觉编程所需软件以及备份SD卡,重点是机器视觉环境OpenCV的安装与...
  • iracer
  • iracer
  • 2016-06-09 23:57
  • 16925

用Python和OpenCV创建一个图片搜索引擎的完整指南

本文将介绍用Python和OpenCV创建一个简单的图片搜索引擎, CBIR系统的构建主要包括: 1)定义图像描述符(图像特征提取) 这一阶段,需要决定描述图像的哪...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)