【scikit-learn】02:使用sklearn库进行统计学习

scikit-learn入门指南
本文档通过一系列实例介绍了scikit-learn库的基本用法,涵盖从数据加载到多种机器学习算法的应用,如聚类、分类及回归等,并探讨了统计学习在科学数据处理中的应用。

# -*-coding:utf-8-*-

# ----------------------
#   Author:kevinelstri
#   Datetime:2017.2.17
# ----------------------

# -----------------------
#   A tutorial on statistical-learning for scientific data processing  科学数据处理的统计学习教程
#   http://scikit-learn.org/stable/tutorial/statistical_inference/index.html
# -----------------------

'''
'''

'''
    Statistical learning 统计学习:
    随着实验科学面临的数据集的大小急剧增加,机器学习技术逐渐发挥着重要的作用。

    这个教程将会探索统计学习,机器学习技术就是为了达到统计判断的目的:从数据中获得结论。

    scikit-learn 是python中实现经典机器学习的模块,实现了与python库(Numpy, Scipy, matplotlib)的紧密结合
'''

# -------------------------------
#   Statistical learning: the setting and the estimator object in scikit-learn
#   统计学习:scikit-learn 的设置和估计对象
#   http://scikit-learn.org/stable/tutorial/statistical_inference/settings.html
# -------------------------------

'''
    Datasets 数据集:
    scikit-learn 是从一个或多个数据集学习信息,这样的数据集也就是二维数组。
    二维数组的第一个轴为样本轴(samples axis),第二个轴为特征轴(features axis)
'''
from sklearn import datasets

iris = datasets.load_iris()
data = iris.data
print data.shape  # 数据集iris的形状(150, 4),iris数据集由150个观察值构成,每个观察值有4个特征,他们的萼片和花瓣的长度和宽度存储在iris.DESCR
print iris.DESCR

#  由于数据集的最初格式不是(n_samples, n_features), 所以还需要进行预处理,来满足scikit-learn的要求

digits = datasets.load_digits()
print digits.images.shape  # (1797, 8, 8)

import matplotlib.pyplot as plt

print plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)

# 将scikit应用于这个数据集上,可以将8*8的图像转换为一个长度为64的特征向量

data = digits.images.reshape((digits.images.shape[0], -1))
print data

'''
    Estimators objects 估计对象
    Fitting data:数据拟合
    scikit-learn 主要实现的功能就是预测器的功能,预测器就是从数据中学习,可能是分类,回归,聚类算法,或者是从原始数据中进行提取和过滤特征
'''
# 一个预测对象包括fit()方法
estimator.fit(data)  # 预测器的方法
estinator = Estimator(param1, param2)  # 当被实例化或者是更改属性时,所有的参数都可以进行设置
estinator.param1

'''
    Estimator parameters 参数估计:
    1、当被实例化或者是更改属性时,所有的参数都可以进行设置
    2、当数据与估计值匹配时,参数就从数据中估计获得;所有的参数估计都是由以下划线结束的对象估计的属性
'''
estinator.estimated_param_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值