使用Torch nngraph实现LSTM

本文介绍了RNN、LSTM的基本概念和梯度消失问题,并详细阐述了如何使用Torch中的nngraph库构建LSTM模块,通过实例展示了nngraph在构建复杂神经网络结构上的便利性。

什么是RNN

RNN:多层反馈RNN(Recurrent neural Network、循环神经网络)神经网络是一种节点定向连接成环的人工神经网络。这种网络的内部状态可以展示动态时序行为。不同于前馈神经网络的是,RNN可以利用它内部的记忆来处理任意时序的输入序列,这让它可以更容易处理如不分段的手写识别、语音识别等。——百度百科

下面我们看看抽象出来的RNN的公式:
ht=θϕ(ht1)+θxxt
yt=θyϕ(ht)
可以发现每次RNN都要使用上一次中间层的输出 ht

传统RNN的缺点—梯度消失问题(Vanishing gradient problem)

我们定义loss function为 E ,那么梯度公式如下:
Eθ=St=1Etθ
Etθ=tk=1Etytythththk<

使用torch实现LSTM,你需要首先导入torchtorch.nn模块。然后,你可以通过继承nn.Module类来创建一个自定义的LSTM模型。 下面是一个简单的例子,展示了如何使用torch实现LSTM: ```python import torch import torch.nn as nn class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out ``` 在这个例子中,LSTMModel继承自nn.Module类,其初始化函数中定义了LSTM的参数,包括输入大小input_size、隐藏状态大小hidden_size、LSTM层数num_layers和输出大小output_size。在forward函数中,我们定义了LSTM模型的前向传播过程。首先,我们初始化隐藏状态h0和记忆状态c0为全零张量,并将其发送到相应的设备上。然后,我们将输入x和隐藏状态传入LSTM模型中,得到输出out。最后,我们将out的最后一个时间步的输出通过全连接层fc进行处理,得到最终的输出。 你可以根据自己的需求修改LSTMModel的参数和网络结构。希望这个例子能帮到你!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值