人脑是怎样认知图像的?——傅里叶模式(传统模式识别之四)

转载 2011年01月22日 14:51:00

傅立叶模式认为,人脑长时记忆存储的是图像形状的傅立叶转换模式,而不是图像形状的原形。傅立叶变换的实质是将视网膜得到的图像的密度矩阵分解成一定频率上的信号。也就是说,把在真实世界看到的图像通过一个变换而转变到频率空间去,从而可以在频率空间看到原来在真实世界看不到的许多特征,并根据这些特征进行分析与识别。

傅立叶模式的优点是:

当图像在一定范围内变化时,其傅立叶变换后的某些量仍然没有变。图像平移不影响其傅立叶变换的幅度。换句话说,只要知道一个图像的傅立叶变换的幅度,则无论这个图像如何平移,都能根据原来的傅立叶变换幅度进行这一图像的识别。

当一个图像旋转后,其傅立叶谱的形状没有变,而且傅立叶谱的方向跟着旋转一个相同角度。这样,只要知道一个图像的傅立叶谱,则这一图像无论怎样旋转,都能被同一傅立叶谱识别。

傅立叶模式的另一个优点是实现方便。尤其是快速傅立叶变化,使得计算速度很快。

傅立叶模式存在三个难以克服的困难:

首先是傅立叶变化对整个图像的变换,若图像由若干个部分组成,则经傅立叶变换后的谱不能指出那些谱是对应图像的那一部分。

傅立叶变换的另一个致命问题是:图像的任何一小部分有一个无规则的变动,都会引起傅立叶谱的激烈变化。

第三个问题是找不到一种将傅立叶谱与图像位置相对应的规律。

                                                                       (作者:刘建忠    http://hi.baidu.com/liujianz

人脑是怎样认知图像的?——相互作用激活理论(最新模式识别之四)

相互作用激活理论(interactive activation model)是麦克利兰和鲁姆尔哈特(McClelland & Rumelhart )于1981 提出。主要处理在语境(conte...

人脑是怎样认知图像的?——模板匹配模式(传统模式识别之一)

这个模型最早是针对机器的模式识别而提出来的,后来被用来解释人的模式识别。它的核心思想是认为在人的长时记忆中,贮存着许多各式各样的过去在生活中形成的外部模式的袖珍复本。这些袖珍复本即称作模板(Templ...

人脑是怎样认知图像的?——原型匹配模型(传统模式识别之二)

这个假说可看作是针对模板说的不足而提出来的。原型说的突出特点是,它认为在记忆中贮存的不是与外部模式有一对一关系的模板,而是原型(Prototype)。原型不是某一个特定模式的内部复本。它被看作一类客体...

人脑是怎样认知图像的?——特征分析模式(传统模式识别之三)

前面已经说过,模式是由若干元素或成分按一定关系构成的。这些元素或成分可称为特征,而其关系有时也称为特征。特征说认为,模式可分解为诸特征。例如,一个大写的英文字母A可以分解为下列特征(见下图):两条斜线...

人脑是怎样认知图像的?——结构描述模式(传统模式识别之五)

结构描述模式一般用图来表示,图的节点表示图像某一部分或某一特性,图的节点之间用有向线段相联,说明图像各部分或各特性之间的关系。图像特征可以是亮度、颜色、纹理、大小、取向、形状等等,特征的描述可以是文字...

人脑是怎样认知图像的?——成分识别理论(最新模式识别之三)

Biederman(1987)在Marr和Nishihara(1978)的理论的基础上提出了成分识别理论(recognition-by component theory)。该模型基于这样一种观...

人脑是怎样认知图像的?——注意的特征整合理论(最新模式识别之二)

人脑是怎样认知图像的?——注意的特征整合理论(最新模式识别之二)注意的特征整合理论(feature-integration theory of attention)主要探讨视觉早期加工的问题,因此...

人脑是怎样认知图像的?——十种模式识别认知理论简介导引

在许多科幻电影中都会看到,机器人健步如飞,寻找和发现敌人,比我们人类看的远、看的准,力大无比,智慧超群,总是在最危险的时候挽救人类。其实,这些目前还仅仅是科幻,在现实世界中办不到。原因之一就是我们还不...

对比传统模式识别方法理解 Deep Learning

通过从传统的模式识别系统分析入手,理解Deep learning 到底做了什么。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:人脑是怎样认知图像的?——傅里叶模式(传统模式识别之四)
举报原因:
原因补充:

(最多只允许输入30个字)