这几天写论文,论文里面涉及到高斯平滑,并且运用到了高斯平滑的一个特性:先用高斯窗口为a的模板平滑,然后在用高斯窗口为b的模板平滑,效果等效于用窗口为c的模板平滑一次,其中c^2=a^2+b^2。这就用到了高斯函数卷积的一个特性:两个高斯函数的卷积为一新的高斯函数,新高斯函数的方差为原来两个高斯函数方差的和。
基于此,就百度搜了搜两个高斯函数的卷积,发觉都是只给结论,没有给出理论过程。那就只能自己推导了。
对于以下高斯函数 :
为两个高斯函数的卷积,则如下表示:
具体推导过程如下:
的结果为一常数,下面给出计算过程:
运用因式替换计算,首先令 ,则可知 ,代入上式中可得:
为了计算 ,将 用另外一种形式表示:
可用下式将上面的积分转换为极坐标形式:
由此可知 的值:
由此可得 为:
由此可知两个高斯函数的卷积为一新的高斯函数,新高斯函数的方差为原来两个高斯函数方差的和。