两个高斯函数的卷积仍为一高斯函数

这几天写论文,论文里面涉及到高斯平滑,并且运用到了高斯平滑的一个特性:先用高斯窗口为a的模板平滑,然后在用高斯窗口为b的模板平滑,效果等效于用窗口为c的模板平滑一次,其中c^2=a^2+b^2。这就用到了高斯函数卷积的一个特性:两个高斯函数的卷积为一新的高斯函数,新高斯函数的方差为原来两个高斯函数方差的和。

基于此,就百度搜了搜两个高斯函数的卷积,发觉都是只给结论,没有给出理论过程。那就只能自己推导了。

对于以下高斯函数  :

 

为两个高斯函数的卷积,则如下表示:


具体推导过程如下:


 

的结果为一常数,下面给出计算过程:


运用因式替换计算,首先令 ,则可知 ,代入上式中可得:

为了计算 ,将 用另外一种形式表示:

可用下式将上面的积分转换为极坐标形式:

由此可知 的值:

 

 

由此可得 为:

由此可知两个高斯函数的卷积为一新的高斯函数,新高斯函数的方差为原来两个高斯函数方差的和。


 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值