高斯概率密度函数相乘仍然是高斯密度函数

本文介绍了高斯分布的概念,探讨了两个高斯分布相乘后依然得到高斯分布的性质。通过详细计算和化简,展示了相乘后的高斯分布表达式,证明了乘积形式为新的高斯分布,并给出了新分布的参数μfg和σfg。
摘要由CSDN通过智能技术生成

高斯分布的概念

百科:
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为 μ \mu μ、方差为 σ 2 \sigma^{2} σ2的正态分布,记为 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)。其概率密度函数为正态分布的期望值 μ \mu μ决定了其位置,其标准差 σ 2 \sigma^2 σ2决定了分布的幅度。当 μ = 0 , σ = 1 \mu=0, \sigma=1 μ=0,σ=1时的正态分布是标准正态分布。
在这里插入图片描述

高斯分布相乘

假设 f ( x ) f(x) f(x) ~ N ( μ f , σ f 2 ) N(\mu_{f}, \sigma_{f} ^{2}) N(μf,σf2) g ( x ) g(x) g(x)~ N ( μ g , σ g 2 ) N(\mu_{g}, \sigma_{g} ^{2}) N(μg,σg2)都是高斯分布
即:
f ( x ) = 1 2 π σ f e − ( x − μ f ) 2 2 σ f 2 f(x) = \frac {1} {\sqrt{2\pi }\sigma_{f}}e^{\frac{-(x-\mu_{f})^{2}}{2\sigma_{f}^{2}}} f(x)=2π σf1e2σf2(xμf)2

g ( x ) = 1 2 π σ g e − ( x − μ g ) 2 2 σ g 2 g(x) = \frac {1} {\sqrt{2\pi }\sigma_{g}}e^{\frac{-(x-\mu_{g})^{2}}{2\sigma_{g}^{2}}} g(x)=2π σg1e2σg2(xμg)2
他们的乘积是:
h ( x ) = f ( x ) g ( x ) = 1 2 π σ f σ g e − ( ( x − μ f ) 2 2 σ f 2 + ( x − μ g ) 2 2 σ g 2 ) — — — — — — — — — — ( 1 ) h(x) = f(x)g(x)=\frac {1} { {2\pi \sigma_{f}\sigma{g}}}e^{-(\frac{(x-\mu_{f})^{2}} {2\sigma_{f}^{2}} + \frac{(x-\mu_{g})^{2}} {2\sigma_{g}^{2}} )} ——————————(1) h(x)=f(x)g(x)=2πσfσg1e(2σf2(xμf)2+2σg2(xμg)2)(1)

现在,我们对其做进一步化简,以期得到 h ( x ) h(x) h(x) 的分布函数。

相乘后的高斯分布

上述公式指数部分为:
β = ( x − μ f ) 2 2 σ f 2 + ( x − μ g ) 2 2 σ g 2 \beta = \frac{(x-\mu_{f})^2}{2\sigma_{f}^{2}} + \frac{(x-\mu_{g})^2}{2\sigma_{g}^{2}} β=2σf

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值