由于python具有无限精度的int类型,所以用python实现大整数乘法是没意义的,但是思想是一样的。利用的规律是:第一个数的第i位和第二个数大第j位相乘,一定累加到结果的第i+j位上,这里是从0位置开始算的。代码如下:
import sys
def list2str(li):
	while li[0]==0:
		del li[0]
	res=''
	for i in li:
		res+=str(i)
	return res
def multi(stra,strb):
	aa=list(stra)
	bb=list(strb)
	lena=len(stra)
	lenb=len(strb)
	result=[0 for i in range(lena+lenb)]
	for i in range(lena):
		for j in range(lenb):
			result[lena-i-1+lenb-j-1]+=int(aa[i])*int(bb[j])
	for i in range(len(result)-1):
		if result[i]>=10:
			result[i+1]+=result[i]//10
			result[i]=result[i]%10
	return list2str(result[::-1])
if __name__=='__main__':
	if len(sys.argv)!=3:
		print('请输入两个参数')
		exit()
	a=sys.argv[1]
	b=sys.argv[2]
	res=multi(a,b)
	print('multi',res)
	print('ok',int(a)*int(b))multi函数是大整数相乘的主函数,输入是字符串格式的两个大整数,输出是字符串格式的结果;list2str函数是把包含每一位数字的list转换成str,并把最高位占位用的0删除。输出结果如下:

 
                   
                   
                   
                   本文介绍了如何在Python中利用大整数乘法规则实现两个大整数的乘法操作,虽然Python内置了无限精度的int类型,但理解这种算法的思想依然有价值。通过将每个数的第i位与另一个数的第j位相乘并累加到结果的第i+j位,可以完成大整数的乘法。代码实现后的结果与Python内置乘法进行了对比。
本文介绍了如何在Python中利用大整数乘法规则实现两个大整数的乘法操作,虽然Python内置了无限精度的int类型,但理解这种算法的思想依然有价值。通过将每个数的第i位与另一个数的第j位相乘并累加到结果的第i+j位,可以完成大整数的乘法。代码实现后的结果与Python内置乘法进行了对比。
           最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   2211
					2211
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            