关闭

There is always a bigger fish

        Always A Bigger Fish 不但是电影情节中的经典桥段,也是各种恶搞的灵感来源——小鱼总是被大鱼吃掉,而大鱼上面总还有更大的鱼。久而久之,聪明的大鱼或许就不会去吃小鱼了,否则按照传统剧情,它身后会出现一条更大的鱼。一个有趣的问题出现了:倘若所有的鱼都是理性的,那会出现怎样的情况呢?     让我们把问题重新叙述一下。假设有 n 条鱼,它们从小到大依次编号为 1, 2, …, n 。我们规定,吃鱼必须要严格按顺序执行。也就是说,大鱼只能吃比自己...
阅读(4835) 评论(13)

There is always a bigger fish

        Always A Bigger Fish 不但是电影情节中的经典桥段,也是各种恶搞的灵感来源——小鱼总是被大鱼吃掉,而大鱼上面总还有更大的鱼。久而久之,聪明的大鱼或许就不会去吃小鱼了,否则按照传统剧情,它身后会出现一条更大的鱼。一个有趣的问题出现了:倘若所有的鱼都是理性的,那会出现怎样的情况呢?     让我们把问题重新叙述一下。假设有 n 条鱼,它们从小到大依次编号为 1, 2, …, n 。我们规定,吃鱼必须要严格按顺序执行。也就是说,大鱼只能吃比自己...
阅读(2834) 评论(0)

There is always a bigger fish

        Always A Bigger Fish 不但是电影情节中的经典桥段,也是各种恶搞的灵感来源——小鱼总是被大鱼吃掉,而大鱼上面总还有更大的鱼。久而久之,聪明的大鱼或许就不会去吃小鱼了,否则按照传统剧情,它身后会出现一条更大的鱼。一个有趣的问题出现了:倘若所有的鱼都是理性的,那会出现怎样的情况呢?     让我们把问题重新叙述一下。假设有 n 条鱼,它们从小到大依次编号为 1, 2, …, n 。我们规定,吃鱼必须要严格按顺序执行。也就是说,大鱼只能吃比自己...
阅读(2306) 评论(1)

There is always a bigger fish

        Always A Bigger Fish 不但是电影情节中的经典桥段,也是各种恶搞的灵感来源——小鱼总是被大鱼吃掉,而大鱼上面总还有更大的鱼。久而久之,聪明的大鱼或许就不会去吃小鱼了,否则按照传统剧情,它身后会出现一条更大的鱼。一个有趣的问题出现了:倘若所有的鱼都是理性的,那会出现怎样的情况呢?     让我们把问题重新叙述一下。假设有 n 条鱼,它们从小到大依次编号为 1, 2, …, n 。我们规定,吃鱼必须要严格按顺序执行。也就是说,大鱼只能吃比自己...
阅读(1576) 评论(0)

There is always a bigger fish

        Always A Bigger Fish 不但是电影情节中的经典桥段,也是各种恶搞的灵感来源——小鱼总是被大鱼吃掉,而大鱼上面总还有更大的鱼。久而久之,聪明的大鱼或许就不会去吃小鱼了,否则按照传统剧情,它身后会出现一条更大的鱼。一个有趣的问题出现了:倘若所有的鱼都是理性的,那会出现怎样的情况呢?     让我们把问题重新叙述一下。假设有 n 条鱼,它们从小到大依次编号为 1, 2, …, n 。我们规定,吃鱼必须要严格按顺序执行。也就是说,大鱼只能吃比自己...
阅读(2069) 评论(0)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(2853) 评论(6)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(1748) 评论(0)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(1547) 评论(0)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(1413) 评论(0)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(1436) 评论(0)

趣题:面积为1的凸多边形总能放进一个面积为2的矩形里

证明:任意给定一个面积为 1 的凸多边形,我们总能把它放进一个面积为 2 的矩形里。 注意,这里“凸多边形”的条件是必需的——如果图形不是凸的,很容易想出反例来。                              容易想到,对于面积为 1 的三角形来说,结论是成立...
阅读(1517) 评论(0)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(2129) 评论(2)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(1516) 评论(1)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(1491) 评论(0)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(1304) 评论(0)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(1322) 评论(0)

Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯ 上面这个数列有什么规律?    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。<br...
阅读(1483) 评论(0)

比乘法更大的是乘方,比乘方更大的是什么?

    小学时,老师说,由于生活中经常需要把同一个数加很多很多次,因此人们发明了乘法。 a × b 就表示 b 个 a 相加。初中时,老师说,由于生活中经常需要把同一个数乘很多很多次,因此人们发明了乘方。 a ^ b 就表示 b 个 a 相乘。令人失望的是,到了高中时,我们并没有学到更牛 B 的运算符号;大学都快学完了,似乎也没见到乘方升级的苗头。乘方之上究竟是什么?下面,有请今天的主角——超级幂——登场!    很容易想到,比乘方更大一级的运算就是把 b 个 “a 次方” 重叠起来...
阅读(1921) 评论(0)

比乘法更大的是乘方,比乘方更大的是什么?

    小学时,老师说,由于生活中经常需要把同一个数加很多很多次,因此人们发明了乘法。 a × b 就表示 b 个 a 相加。初中时,老师说,由于生活中经常需要把同一个数乘很多很多次,因此人们发明了乘方。 a ^ b 就表示 b 个 a 相乘。令人失望的是,到了高中时,我们并没有学到更牛 B 的运算符号;大学都快学完了,似乎也没见到乘方升级的苗头。乘方之上究竟是什么?下面,有请今天的主角——超级幂——登场!    很容易想到,比乘方更大一级的运算就是把 b 个 “a 次方” 重叠起来...
阅读(1950) 评论(1)

比乘法更大的是乘方,比乘方更大的是什么?

    小学时,老师说,由于生活中经常需要把同一个数加很多很多次,因此人们发明了乘法。 a × b 就表示 b 个 a 相加。初中时,老师说,由于生活中经常需要把同一个数乘很多很多次,因此人们发明了乘方。 a ^ b 就表示 b 个 a 相乘。令人失望的是,到了高中时,我们并没有学到更牛 B 的运算符号;大学都快学完了,似乎也没见到乘方升级的苗头。乘方之上究竟是什么?下面,有请今天的主角——超级幂——登场!    很容易想到,比乘方更大一级的运算就是把 b 个 “a 次方” 重叠起来...
阅读(1879) 评论(2)
1899条 共95页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1039374次
    • 积分:28398
    • 等级:
    • 排名:第208名
    • 原创:1899篇
    • 转载:0篇
    • 译文:0篇
    • 评论:300条
    最新评论