《什么是数学》读书笔记(二·上):从自然数到实数

本文从Peano公理出发,探讨自然数、整数、有理数和实数的数学概念。通过公理化定义,解释了如何从自然数扩展到实数,涉及到负数、有理数的引入以及无理数的概念,阐述了数学体系的逐步完善过程。
摘要由CSDN通过智能技术生成

    今天,我们将从一系列公理开始,从自然数的产生一直说到实数理论的完善。你或许会对数学的“科学性”有一个新的认识。注意,本文的很大一部分内容并非直接来源《什么是数学》,这篇文章可以看作是《什么是数学》中有关章节的一个扩展。

    自然数是数学界中最自然的数,它用来描述物体的个数,再抽象一些就是集合的元素个数。在人类文明的最早期,人们就已经很自然地用到了自然数。可以说,自然数是天然产生的,其余的一切都是从自然数出发慢慢扩展演变出来的。数学家Kronecker曾说过,上帝创造了自然数,其余的一切皆是人的劳作。 (God made the natural numbers; all else is the work of man.)
    随着一些数学理论的发展,我们迫切地希望对自然数本身有一个数学描述。从逻辑上看,到底什么是自然数呢?历史上对自然数的数学描述有过很多的尝试。数学家Giuseppe Peano提出了一系列用于构造自然数算术体系的公理,称为Peano公理。Peano公理认为,自然数是一堆满足以下五个条件的符号:
   1. 0是一个自然数;
   2. 每个自然数a都有一个后继自然数,记作S(a);
   3. 不存在后继为0的自然数;
   4. 不同的自然数有不同的后继。即若a≠b,则S(a)≠S(b);
   5. 如果一个自然数集合S包含0,并且集合中每一个数的后继仍在集合S中,则所有自然数都在集合S中。(这保证了数学归纳法的正确性)

    形象地说,这五条公理规定了自然数是一个以0开头的单向有序链表。
    自然数的加法和乘法可以简单地使用递归的方法来定义,即对任意一个自然数a,有:
a + 0 = a
a + S(b) = S(a+b)
a · 0 = 0
a · S(b) = a + (a·b)

    其它运算可以借助加法和乘法来定义。例如,减法就是加法的逆运算,除法就是乘法的逆运算,“a≤b”的意思就是存在一个自然数c使得a+c=b。交换律、结合率和分配率这几个基本性质也可以从上面的定义出发推导出来。
    Peano公理提出后,多数人认为这足以定义出自然数的运算,但Poincaré等人却开始质疑Peano算术体系的相容性:是否有可能从这些定义出发,经过一系列严格的数学推导,最后得出0=1之类的荒谬结论ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值