利用Mahout实现在Hadoop上运行K-Means算法

本文介绍了如何利用Apache Mahout在Hadoop集群上实现K-Means聚类算法。首先概述了Mahout作为可扩展的大数据机器学习库,接着详细解释了K-Means的基本概念。然后,通过描述实验环境设置、数据准备和运行过程,展示了在Hadoop上执行K-Means的步骤,并讨论了解决遇到问题的方法。最后,总结了Mahout在数据挖掘领域的潜力。
摘要由CSDN通过智能技术生成

    K-Means算法是基于分划分的最基本的聚类算法,是学习机器学习、数据挖掘等技术的最基本的 知识,所以掌握其运行原理是很重要的。

    转载请注明出处: http://www.ming-yue.cn/run-kmeans-on-hadoop-with-mahout/

    一、介绍Mahout

    Mahout是Apache下的开源机器学习软件包,目前实现的机器学习算法主要包含有协同过滤/推荐引擎聚类分类三个部分。Mahout从设计开始就旨在建立可扩展的机器学习软件包,用于处理大数据机器学习的问题,当你正在研究的数据量大到不能在一台机器上运行时,就可以选择使用Mahout,让你的数据在Hadoop集群的进行分析。Mahout某些部分的实现直接创建在Hadoop之上,这就使得其具有进行大数据处理的能力,也是Mahout最大的优势所在。相比较于WekaRapidMiner等图形化的机器学习软件,Mahout只提供机器学习的程序包(library),不提供用户图形界面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值