scikit-learn:5. 加载内置公用的数据

本文介绍如何使用scikit-learn加载内置数据,包括20 Newsgroups文本分类数据集和Labeled Faces in the Wild人脸识别数据集。通过fetch_20newsgroups加载新闻数据,并进行文本预处理,利用fetch_20newsgroups_vectorized获取预处理特征。同时探讨了Face Recognition和Face Verification任务。此外,还简要概述了其他如小数据集、图像数据、生成器数据、svmlight/libsvm数据、Olivetti faces数据以及forest covertypes数据集的用途。
摘要由CSDN通过智能技术生成

之前写过一篇如何加载自己的数据,参考:

http://blog.csdn.net/mmc2015/article/details/46852755


本篇主要写如何加载scikit-learn内置数据,参考:

http://scikit-learn.org/stable/datasets/index.html#general-dataset-api

重点介绍“5.7:The 20 newsgroups text dataset”,以练习文本分类问题。

重点介绍“5.9:The Labeled Faces in the Wild face recognition dataset”,以练习图像处理问题。


5.7:The 20 newsgroups text dataset

18000个新闻、可分为20个topics;已经分为training和testing集。


两个loders:

第一个, sklearn.datasets.fetch_20newsgroups,返回原始文档,可进一步使用sklearn.feature_extraction.text.CountVectorizer进行个性化处理;

第二个,sklearn.datasets.fetch_20newsgroups_vectorized,,返回已经处理好的特征(ready-to-use feature),不须再作进一步feature extraction。


加载全部数据和加载部分数据:

from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
cats = ['alt.atheism', 'sci.space']
newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

数据存在filenames和target两个属性中,target是数字0到19,使用target_names[target]可以获取具体类别名称。

注意,实际使用中还是先把数据下载下来,再使用这里 http://blog.csdn.net/mmc2015/article/details/46852963提到的办法加载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值