之前写过一篇如何加载自己的数据,参考:
http://blog.csdn.net/mmc2015/article/details/46852755
本篇主要写如何加载scikit-learn内置数据,参考:
http://scikit-learn.org/stable/datasets/index.html#general-dataset-api
重点介绍“5.7:The 20 newsgroups text dataset”,以练习文本分类问题。
重点介绍“5.9:The Labeled Faces in the Wild face recognition dataset”,以练习图像处理问题。
5.7:The 20 newsgroups text dataset
18000个新闻、可分为20个topics;已经分为training和testing集。
两个loders:
第一个, sklearn.datasets.fetch_20newsgroups,返回原始文档,可进一步使用sklearn.feature_extraction.text.CountVectorizer进行个性化处理;
第二个,sklearn.datasets.fetch_20newsgroups_vectorized,,返回已经处理好的特征(ready-to-use feature),不须再作进一步feature extraction。
加载全部数据和加载部分数据:
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train')
cats = ['alt.atheism', 'sci.space']
newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)
数据存在filenames和target两个属性中,target是数字0到19,使用target_names[target]可以获取具体类别名称。
注意,实际使用中还是先把数据下载下来,再使用这里 http://blog.csdn.net/mmc2015/article/details/46852963提到的办法加载。