scikit-learn(工程中用的相对较多的模型介绍):1.12. Multiclass and multilabel algorithms

本文介绍了在实际工程中广泛应用的scikit-learn多类(Multiclass)和多标签(Multilabel)算法,包括Naive Bayes、LDA、决策树、随机森林、最近邻等。尽管许多分类器默认支持多类分类,但了解这些策略有助于更好地理解和定制分类行为。此外,还区分了Multiclass、Multilabel以及Multioutput-multiclass三种不同的分类问题。

http://scikit-learn.org/stable/modules/multiclass.html



在实际项目中,我们真的很少用到那些简单的模型,比如LR、kNN、NB等,虽然经典,但在工程中确实不实用。

今天我们关注在工程中用的相对较多的 Multiclass and multilabel algorithms。



warning:scikit-learn的所有分类器都是可以do multiclass classification out-of-the-box(可直接使用),所以没必要使用本节介绍的 sklearn.multiclass module,这里只是讲些知识点。

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators in this class if you’re using one of these unless you want custom multiclass behavior:

  • Inherently multiclass: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值