实时路况分析:不同路段车速预测、推荐(距离、时间、路况)最优路径

转的,如果有问题,及时联系我删除。


大雨临城,大数据给你最温暖的怀抱

  2016-07-23  孙弋涵 


烦躁的雨天


北京持续多日的强降水终于结束,打开uber看到界面上的小船又重新回归熟悉的汽车,真是让人大松一口气。



大雨下北京的优步打船


要说暴雨这几天无论对于是坐公共交通系统上下班,还是打车或者开车上班上学的大家最担心的是什么,那肯定就是交通问题了。


凡雨天必堵,我们路上耗费的时间常常比平时多出一倍两倍甚至更多,这种路况着实让大家心情烦躁。


可是天要下雨,这只能预测不能阻止,面对雨天或者是极端天气,我们既然无法避免那就只能积极应对。


那么,如何预测交通状况,进而应对交通拥堵,合理规划出行时间与路径呢?


大数据解救头疼的你


怎么又提到大数据了,难道,大数据能挽救糟糕的路况吗?


很显然,大数据不能减少路上的车辆也不能凭空拓宽车道,但是大数据能够做的你肯定不陌生。


身为一个市民,当你走出家门,打开手机地图app想要选择一条较为通畅的路段时,最想知道的莫过于从走出家门到抵达公司的路况,以及选择最快最便捷地抵达目的地。



现在大家已经离不开实时路况的帮助,那么在这么一张红绿交错的地图后面,普林科技利用大数据作了怎样的工作呢?


大数据是如何工作的


于是我们假设了一个这样的情景



 

普林的科学家们面对这样的情景又做了怎样的工作呢?


 ◆  

建立历史交通数据库


 ◆  

预测当前时刻未来415min车速的情况


 ◆  

预测未来某天24h的车速情况


下面我们来一条条看:


> > > >

建立历史交通数据库


这块内容分为两部分,分别是提取道路信息,和提取车辆信息。


道路信息的提取:首先,从GIS数据库中导出北京市路网数据,这些数据包括道路的起点终点,中轴线经纬度,道路等级,车道数目等等。


根据这个信息,以中轴线为中心,按照车道数向两边延拓,得到每条路的坐标范围;然后将北京市五环30km*30km的范围,用1m*1m的小方格进行离散化,并与道路坐标相对应,对网格进行标记。




接下来是车辆信息的提取:我们的数据来源是北京市6万辆出租车每天的GPS数据,出租车每50s生成一条GPS信息,包括经纬度,车上是否载客等。


首先我们由GPS信息得到车辆的坐标,然后将坐标与之前的道路网格映射,确定车辆所属道路;再根据交通部门的经验和数据特征,以红绿灯、桥梁等对道路进行分段;最后进行速度的计算,时间间隔是15min


如图是我们提取的一块区域的速度状况。



> > > > 未来4个15min车速预测


接下来是速度预测部分,主要从历史速度数据入手。


影响交通状况的因素很多,比如天气状况,车辆数量,交通事故等,但最终都表现在速度,速度包涵的信息量时足够的。


速度预测我们采用的是非参数回归预测法,其核心思想,简单说就是历史数据中最相似的情况,从而进行预测。


熟悉机器学习的话,会发现这种方法与k近邻,也就是KNN方法有些类似,KNN算法的思想是k个特征最近邻的样本大多数属于一个类别,这里非参数的思想是,最近邻的车速曲线,未来时刻的变化也可能相似。


非参数回归法的特点是精度高和可移植性强,只依靠数据驱动,不对数据进行任何假设,例如车辆分部等,只关注历史数据中输入对输出的影响,从而进行预测。


这种方法分为四个组成部分:

状态向量的选取

相似度的度量准则

相似曲线数量选择


预测方法,下面我会结合我们的具体做法,介绍这四个组成部分。


 方法一

第一种方法,状态向量的选取就是需要拿去进行相似度匹配的特征向量。


由于考虑到车速变化存在大的变化趋势,以及小波的震荡噪声,便想到了小波分析出色的分解能力,于是想把它们结合在一起。


我们选择当前时刻的速度,以及前三个时刻的速度,进行小波分解,得到低频CA和高频CD部分。


如图所示,低频部分主要包含着速度变化的趋势,高频部分包含的是不规则的波动。这里我们只用低频的CA作为状态向量。


得到这两部分后,我们需要有一个指标来衡量状态向量与历史数据的相似度,这里采用了扩展欧式距离法。


一般的欧式距离是进行相应时刻的匹配,如图中蓝色距离,即今天8点的车速与历史8点的车速求距离。


但是,考虑到现实生活中可能存在这样一种情况,即速度曲线可能存在“提前”或者“滞后”的错位相似。


所谓错位的相似就是两条曲线可能形状非常相似,但是时间轴上并不是对齐的。具体可以看这幅图,一般欧式距离求得时间轴对齐的蓝色部分的距离,而从图中可以看出,黑色距离连接的点形态更相似,黄色的点是更早一个时刻的点,这就是相似的“提前”。



于是我们在匹配时,向前和向后扩展了两个点,进行距离计算。如图中黑色和红色的距离。


这样的话,与K条曲线一次匹配得到3N个距离,将这3N个距离排序即得相似排序,这样保证了保证了相似曲线的精确性以及较大的权重,因为同一条曲线的3个距离可能都很像,那么就能这条曲线会被取三次,对整条曲线来说,被赋予更多的权重,从而实现一定程度的排除噪声,增强鲁棒性。


相似度的度量准则则使用了扩展欧式距离。


相似曲线数量选择:取CA的扩展欧式距离作为相似度指标,寻找最相似的K条CA,这里令K=10。


预测方法则是,取相似的低频CA t+1时刻的小波系数进行带权重的赋值,权重即是距离倒数与距离总和的比值,即PPT中的bi,从而得到预测值。


我们看看这种方法的预测效果,这里以北京四环为例,将四环按照立交桥分为24段,速度时间间隔为15min,以三个月的历史交通数据作为检索库,预测20137月连续17天,预测时间间隔为15min可以看到,系统平均误差为11.56%,计算速度每条路每天96个点耗时10s。预测效果不错。

预测结果:系统平均误差11.56%,计算速度每段路10s/天(96个点)


但同时,考虑到我们需要对北京市五环内的主路路网都进行预测,要实现实时预测,计算量很大,所以我们希望找出一种更简单,更快,精度更高的方法。


于是我们尝试了方法二和方法三。


方法二和三



这时取了当前时刻和前3个时刻的速度直接做状态向量,采用了一种新的相似度度量准则,动态时间弯曲距离,又称DTW,也是考虑到速度“提前”和“滞后”的错位匹配,这是基于动态规划思想的方法,通过构造邻接矩阵,以最短路径之和作为距离。从图中可以直观了解到DTW距离的特点。



相似曲线取了最相似的10条速度曲线,取他们t+1时刻的速度进行带权重的赋值,得到预测的速度。


我们看看这种方法的预测效果,这里以北京四环为例,将四环按照立交桥分为24段,速度时间间隔为15min,以三个月的历史交通数据作为检索库,预测20137月连续17天,预测时间间隔为15min

预测结果:

扩展欧氏距离:系统平均误差—9.57%  ;计算速度—每段路0.2s/天

DTW距离:系统平均误差—9.60%;计算速度—每段路2s/天



三种方法对比


可见,三种方法进行对比,发现速度作为状态向量,扩展欧式距离进行匹配,带权重赋值的方法预测效果最好,精度高且计算速度快,能够适应北京市路网预测的需求。


同理,我们可以用同样的方法对30min,45min,60min的车速进行预测。


那么,未来24h呢?


> > > > 未来某天24h车速预测



第三部分我们进行未来某天24h的车速预测。主要方法还是非参数回归法。


这时候我们把天气作为主要因素加入到模型当中。


每半小时有一条天气数据,数据包括天气状态,降水量,温度,湿度等。


考虑到天气预报的准确性,我们这里的某天24小时,一般指的是3天内。


对于这些变量我们采用假设检验进行显著性的判断。


首先,按照天气状态分类,做车速均值与晴天相等的假设检验,结论是下雨下雾对天气的影响是较为显著的。


对于另一部分变量,按照某边界划分为两组,做车速相等的假设检验,发现温度和湿度对车速的影响较为显著。



这时我们还对降水数据进行了一个预处理,我们降水量只有全天的数据,但会标注出哪个时刻有降水,所以我们假设降水在降水时段是均匀分布的,所以

——每时段降水量=全天降水量/降水时段数量。


因为只有历史真实的天气数据,我们假设每天的分时天气预报是准确的,从而进行预测。


方法是也是非参数预测法,在这之前加入了一个判断步骤,将天气进行好天气,下雨,下雾三类判别。状态向量取t时刻的降水、湿度和湿度。


相似度度量准则采用欧式距离,相似曲线数量选择三条,取t时刻的速度进行带权重的预测算法。


预测结果,同样以北京四环为例,三个月的历史交通数据作为匹配库,预测7月连续一周的车速,预测时间间隔为30min,系统误差为12.7%。


四环24段路平均误差


预测结果:系统误差为12.7%




通过以上几个方向的努力,我们成功实现了道路未来道路未来4个15min车速预测,误差仅为9.57% ;而道路未来某天24h车速预测,误差为12.7%。


同时还对出行方案进行三种路径规划(念叨了这么久,这里就省略啦):


一是路程最短路径,


二是道路最优路径,


三是时间最短路径。


三种路径的规划全方面满足不同的出行需求,无论是求快还是求稳,都能满足你的要求。


雨天再也不怕赴约迟到啦!



解决交通问题,不仅仅是出行便捷



北京作为一个特大城市,交通问题一直是困扰着大家的问题,一旦堵车可能行车时间动辄加倍,大数据在解决大家出行问题时,不仅仅帮助大家有效规划出最便捷最优化的路线更能缓解交通拥堵,引导车辆躲避拥堵避免堵上加堵。


大数据下的出行方案,实时反馈交通状况预测,精准预测未来路况,更关注每一个人的出行,缓解交通压力。





  • 5
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
### 回答1: 云计算技术可以帮助无人送货小车进行实时数据分析预测,具体步骤如下: 1. 数据采集:无人送货小车需要搭载传感器来采集各种数据,比如车速、温度、湿度、路况等等。这些数据可以通过物联网技术上传到云端。 2. 数据存储:云端需要提供大规模的数据存储服务,将无人送货小车采集到的数据存储起来,以备后续分析和处理。 3. 数据分析:云端可以利用机器学习、深度学习等技术对数据进行分析,识别出潜在的问题和风险,并预测未来的趋势和需求。比如,可以利用历史数据预测未来的交通拥堵情况,从而提前规划最优的路线,提高配送效率。 4. 预测模型部署:根据数据分析的结果,可以将预测模型部署到无人送货小车上,实现智能化控制,提高车辆的运行效率和安全性。 总之,云计算技术可以为无人送货小车提供强大的数据处理和分析能力,实现智能化控制,提高配送效率和安全性。 ### 回答2: 云计算技术对无人送货小车进行实时数据分析预测的过程如下: 首先,无人送货小车在运行过程中会产生大量的传感器数据,例如位置、速度、加速度、传感器状态等信息。这些数据会通过传感器设备实时收集,并发送到云服务器。 其次,云服务器利用云计算技术中的大数据分析技术来处理这些实时数据。服务器上的大数据分析平台可以对收集到的数据进行实时处理和分析,例如基于位置和速度数据,通过聚类算法将小车的运动轨迹进行分类,识别出常用的运输路线以及频繁出现的瓶颈区域。 然后,云服务器通过数据挖掘和机器学习算法,对小车的运行数据进行建模和训练。通过对历史数据的学习,可以预测小车在不同路线、不同时间段和不同天气条件下的送货时间,从而提前预测可能出现的延误情况。 最后,通过实时数据分析预测,云服务器可以实时监控和管理无人送货小车的运营状态。例如,当预测模型发现某个路段交通拥堵可能导致延误时,可以及时发送提醒给相关人员,调整送货路线或提前安排其他辅助措施,以减少延误的发生。 综上所述,云计算技术可以通过实时数据分析预测,帮助无人送货小车优化运输路线和提前预测运输时间,从而提高送货效率和准确性。同时,云服务器还可以对无人送货小车的运营状态进行实时监控和管理,以便及时采取相应措施应对可能的问题。 ### 回答3: 云计算技术对无人送货小车的实时数据分析预测有着重要作用。首先,云计算可以提供高性能的计算能力和存储空间,可以轻松处理大规模数据分析和存储需求。无人送货小车在行驶过程中通过搭载的传感器和摄像头采集各种数据,如路况、交通情况、传感器数据等,云计算可以对这些数据进行实时分析和处理,为无人车提供准确的路况信息和决策支持。 其次,云计算技术可以通过实时数据分析预测提高无人送货小车的效率和安全性。云平台可以将无人车采集的数据通过实时分析算法进行处理,预测出行车路径的最佳选择、货物配送的最佳路线等。同时,云计算可以分析无人车的历史数据和大量的相关数据,通过机器学习和深度学习算法进行预测,提前发现可能出现的问题,如交通拥堵、事故风险等,从而提醒和调整车辆行驶策略,保证送货过程的安全和高效。 此外,云计算可以通过无人车实时数据分析预测进行数据挖掘,发现潜在的商业价值和优化空间。云平台可以收集、存储和分析全国各地无人车的实时数据,利用大数据分析技术找到规律和趋势,提供给相关企业和政府部门,以进一步优化物流、交通规划、物流配送等领域的决策和运营策略,提升整体效益。 综上所述,云计算技术为无人送货小车的实时数据分析预测提供了强大的计算和存储能力,能够提高车辆的效率、安全性,并且发掘出更多潜在的商业价值和优化空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值