Python与机器学习(二):Windows下科学计算环境搭建

原创 2016年02月24日 23:31:37

【注意:安装numpy和scipy模块时注意与Python版本保持一致】

1.安装numpy

首先安装好Python,我安装的是Python3.4,并配置好Python的环境变量,即在环境变量path中添加Python路径
然后在终端输入:
python -m pip install -U pip,等待安装完成,界面如下:

安装完成后,在系统环境变量PATH中添加pip路径:Python目录下的script文件夹中【否则运行pip会提示“pip不是内部或外部命令
之后此处下载numpy-1.10.4+mkl-cp34-cp34m-win_amd64.whl【注意Python版本和位数
然后切换至numpy-1.10.4+mkl-cp34-cp34m-win_amd64.whl所在目录
最后在终端运行:pip install numpy-1.10.4+mkl-cp34-cp34m-win_amd64.whl
【Linux强大的命令:sudo yum -y install gcc gcc-c++ numpy python-devel scipy】

测试:

没有报错,bingo~

2.安装scipy

官网中下载scipy3.4版本:scipy-0.17.0-cp34-none-win_amd64.whl 【如果网页进不去,多半是要翻墙了~~大坑】

在终端使用pip安装:

3.安装matplotlib

官网中下载matplotlib3.4版本:matplotlib-1.5.1-cp34-none-win_amd64.whl

【Linux下运行:sudoyum install python-matplotlib

在终端使用pip安装:

测试:

到此用于计算的模块基本安装完成,倘若后期需要其他模块再继续安装。

整理了一下刚下载的文件,若在官网中不好找到,可以在此处下载。


下面几篇文章是针对上述三个模块的入门指导:

numpy快速处理数据【查看

scipy数值计算库【查看

matplotlib绘图库入门【查看








版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

unity地形编辑扩展插件Landspace Auto Material介绍

LAM是一套针对复杂地形和植物的编辑工具, 增加了一些unity自带地形编辑器没有的功能, 对其用法做一下简单介绍。

面试题:8个试剂,其中一个有毒,最少多少只小白鼠能检测出有毒试剂

面试题:8个试剂,其中一个有毒,最少多少只小白鼠能检测出有毒试剂方法1:用3只小鼠,能组合成8种状态。 第一只喂食【1、3、5、7】四只试剂 第二只喂食【2、3、6、7】四只试剂 第三只喂食【4、5、...

conda 使用清华大学开源软件镜像

conda 使用清华大学开源软件镜像Anaconda的安装步骤不在本文的讨论中,我们主要是学习一下如何配置conda的镜像,以及一些问题的解决过程配置镜像在conda安装好之后,默认的镜像是官方的,由...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)