最大似然概率和后验概率的区别

转载 2016年08月29日 18:06:46

极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点。频率派认为,参数是客观存在的,只是未知而矣。因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示:


D表示训练数据集,是模型参数

相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一个期望值,如下所示:

其中x表示输入,y表示输出,D表示训练数据集,是模型参数


  该公式称为全贝叶斯预测。现在的问题是如何求(后验概率),根据贝叶斯公式我们有:


  可惜的是,上面的后验概率通常是很难计算的,因为要对所有的参数进行积分,不能找到一个典型的闭合解(解析解)。在这种情况下,我们采用了一种近似的方法求后验概率,这就是最大后验概率。


  最大后验概率和极大似然估计很像,只是多了一项先验分布,它体现了贝叶斯认为参数也是随机变量的观点,在实际运算中通常通过超参数给出先验分布。

  从以上可以看出,一方面,极大似然估计和最大后验概率都是参数的点估计。在频率学派中,参数固定了,预测值也就固定了。最大后验概率是贝叶斯学派的一种近似手段,因为完全贝叶斯估计不一定可行。另一方面,最大后验概率可以看作是对先验和MLE的一种折衷,如果数据量足够大,最大后验概率和最大似然估计趋向于一致,如果数据为0,最大后验仅由先验决定。


本文假设大家都知道什么叫条件概率了(P(A|B)表示在B事件发生的情况下,A事件发生的概率)。

先验概率和后验概率
教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。

假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。

堵车的概率就是先验概率

那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。

如果我们已经出了门,然后遇到了堵车,那么我们想算一下堵车时由交通事故引起的概率有多大,

那这个就叫做后验概率 (也是条件概率,但是通常习惯这么说)。也就是P(交通事故|堵车)。这是有果求因。

下面的定义摘自百度百科:

先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.

后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因".

那么这两个概念有什么用呢?

最大似然估计
我们来看一个例子。

有一天,有个病人到医院看病。他告诉医生说自己头痛,然后医生根据自己的经验判断出他是感冒了,然后给他开了些药回去吃。

有人肯定要问了,这个例子看起来跟我们要讲的最大似然估计有啥关系啊。

关系可大了,事实上医生在不知不觉中就用到了最大似然估计(虽然有点牵强,但大家就勉为其难地接受吧^_^)。

怎么说呢?

大家知道,头痛的原因有很多种啊,比如感冒,中风,脑溢血...(脑残>_<这个我可不知道会不会头痛,还有那些看到难题就头痛的病人也不在讨论范围啊!)。

那么医生凭什么说那个病人就是感冒呢?哦,医生说这是我从医多年的经验啊。

咱们从概率的角度来研究一下这个问题。

其实医生的大脑是这么工作的,

他计算了一下

P(感冒|头痛)(头痛由感冒引起的概率,下面类似)

P(中风|头痛)

P(脑溢血|头痛)

...

然后这个计算机大脑发现,P(感冒|头痛)是最大的,因此就认为呢,病人是感冒了。看到了吗?这个就叫最大似然估计(Maximum likelihood estimation,MLE) 。

咱们再思考一下,P(感冒|头痛),P(中风|头痛),P(脑溢血|头痛)是先验概率还是后验概率呢?

没错,就是后验概率。看到了吧,后验概率可以用来看病(只要你算得出来,呵呵)。

事实上,后验概率起了这样一个用途,根据一些发生的事实(通常是坏的结果),分析结果产生的最可能的原因,然后才能有针对性地去解决问题。

那么先验概率有啥用呢?

我们来思考一下,P(脑残|头痛)是怎么算的。

P(脑残|头痛)=头痛的人中脑残的人数/头痛的人数

头痛的样本倒好找,但是头痛的人中脑残的人数就不好调查了吧。如果你去问一个头痛的人你是不是脑残了,我估计那人会把你拍飞吧。

接下来先验概率就派上用场了。

根据贝叶斯公式 ,

P(B|A)=P(A|B)P(B)/P(A)

我们可以知道

P(脑残|头痛)=P(头痛|脑残)P(脑残)/P(头痛)

注意,(头痛|脑残)是先验概率,那么利用贝叶斯公式我们就可以利用先验概率把后验概率算出来了。

P(头痛|脑残)=脑残的人中头痛的人数/脑残的人数

这样只需要我们去问脑残的人你头痛吗,明显很安全了。

(你说脑残的人数怎么来的啊,那我们就假设我们手上有一份传说中的脑残名单吧。那份同学不要吵,我没说你在名单上啊。

再说调查脑残人数的话咱就没必要抓着一个头痛的人问了。起码问一个心情好的人是否脑残比问一个头痛的人安全得多)

我承认上面的例子很牵强,不过主要是为了表达一个意思。后验概率在实际中一般是很难直接计算出来的,相反先验概率就容易多了。因此一般会利用先验概率来计算后验概率。

似然函数与最大似然估计

下面给出似然函数跟最大似然估计的定义。

我们假设f是一个概率密度函数,那么

是一个条件概率密度函数(θ 是固定的)

而反过来,

叫做似然函数 (x是固定的)。

一般把似然函数写成

θ是因变量。

而最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。

意思就是呢,当后验概率最大时θ的大小。也就是说要求最有可能的原因。

由于对数函数不会改变大小关系,有时候会将似然函数求一下对数,方便计算。

例子:

我们假设有三种硬币,他们扔到正面的概率分别是1/3,1/2,2/3。我们手上有一个硬币,但是我们并不知道这是哪一种。因此我们做了一下实验,我们扔了80次,有49次正面,31次背面。那么这个硬币最可能是哪种呢?我们动手来算一下。这里θ的定义域是{1/3,1/2,2/3}


相关文章推荐

最大似然和最大后验的关系

学过概率论的都应该知道贝叶斯公式。贝叶斯准则的公式可以写成如下的形式: 其中x1-xI表示我输入的一串数据,theta代替的是生成模型的一系列参数。 等式左边表示的是后验概率:我给你一串数据...

MLE极大似然估计和EM最大期望算法

机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM...

最大后验译码和最大似然译码

在已知接受值R的条件下,找出所有发送码字Ci中可能性最大的发送码字作为译码估值C‘,即C’=maxP(Ci|R)。这种译码方法叫做最大后验概率译码,它是一种通过经验与归纳,由接收值推测发送码字的方法,...
  • xdg1981
  • xdg1981
  • 2010年08月05日 07:42
  • 1781

先验概率、最大似然估计、贝叶斯估计、最大后验概率

参数估计的方法有多种,这里我们分析三种基于概率的方法,分别是最大似然估计(Maximum Likelihood)、贝叶斯估计(Bayes)和最大后验估计(Maximum a posteriori)。我...

最大似然估计MLE与贝叶斯估计

上大学学习数理统计这门课程的时候,没有特别用心。说实话统计学还是挺枯燥的,而且当时也没有太多的学习意识,不知道为什么要学这些貌似八竿子打不着的东西。现在想想,当时真是too simple,someti...

频率学派和贝叶斯学派的参数估计

一 频率学派与贝叶斯学派的区别 二 频率学派的参数估计 极大似然估计 1 离散随机变量的似然函数 2 连续随机变量的似然函数 3 最大似然估计一般求解过程 三 贝叶斯学派的参数估计 最大后验估计 贝...
  • wzgbm
  • wzgbm
  • 2016年06月20日 15:37
  • 1786

机器学习笔记(五)续——朴素贝叶斯算法的后验概率最大化含义

上一节中讲了朴素贝叶斯算法将实例分到后验概率最大的类。这等价于期望风险最小化。假设使用0-1损失函数: L(Y,f(X))={1,0,Y≠f(X)Y=f(X) L(Y, f(X)) = \Bi...

机器学习:浅谈先验概率,后验概率

机器学习:浅谈先验概率,后验概率            在学习贝叶斯网络模型的时候,接触到好多比较麻烦的概念,今天又复习了一下,就写一下笔记,用来巩固一下。       主题模型LDA算法是自PLSA...

最大似然估计、最大后验估计和贝叶斯估计的关系

最大似然估计(MLE) 原理:设X1, X2…Xn是取自总体X的一个样本,样本的联合密度(连续型)或联合概率密度(离散型)为f(X1, X2…Xn; Θ)。当给定样本X1, X2…Xn时,定义似然函数...

最大似然估计(MLE)和最大后验概率(MAP)

最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最大似然概率和后验概率的区别
举报原因:
原因补充:

(最多只允许输入30个字)