最大似然估计和最大后验估计

概率与统计

概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。

概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。

回到这个函数P(x∣θ),其中x表示数据,θ表示参数,已知x求θ就是统计问题,已知θ求x就是概率问题。

如果θ 是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。

如果x是已知确定的,θ是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少。


最大似然估计(MLE)

最大似然估计是以当前数据推断可能性最大的模型和参数,比如有放回地摸取袋子中的球,若10次中有7次摸到红球,以最大似然估计则从该袋中摸取红球的概率是0.7。

若要进行详细计算,就是这样的过程,我们把这十次抽取看成一个整体事件 [A],很明显事件 [A] 发生的概率是每个子事件概率之积。我们把P(A)看成一个关于p的函数,求 P(A)取最大值时的p ,这就是极大似然估计的思想。具体公式化描述为
在这里插入图片描述

接下来就是取对数转换为累加,然后通过求导令式子为0来求极值,求出p的结果。
在这里插入图片描述
通过画出函数图像,我们也可以看出,要使P(A)最大,p=0.7
在这里插入图片描述


最大后验估计(MAP)

最大似然估计在摸球问题上似乎显得非常的合理,那是因为我们事先对袋中的球的情况没有任何了解。如果我们事先对事件的概率有个粗略的判断,可能这种办法看起来就不是那么合理了。

比如
抛一枚硬币,10次中有7次是正面朝上,以最大似然估计会得到正面朝上的概率为0.7的结论,但是我们都知道硬币正面朝上的概率是接近0.5的,10次这个数量太小了,有很大的偶然性。

在最大后验估计中加入了预设的θ的概率分布P(θ),比如假设硬币正面朝上的概率服从正态分布,如下图
在这里插入图片描述
在MLE中我们得到的P(A)图像在MAP中是P(X0|θ)图像,用它乘上预设的概率分布,就得到了MAP中P(A)的图像
在这里插入图片描述
观察图像可以粗略看出,最大值是大于0.5也小于0.7的。


MLE与MAP的联系

最大似然估计实际上可以看做是预设为均匀分布的最大后验估计。

而当实验次数非常大时,最大后验估计结果是非常接近于最大似然估计的。这也符合我们的常识,如果抛了1亿次硬币,正面次数接近70%,那么它一定是一枚不均匀的硬币或者有磁力干扰,总之正面概率应该是0.7.

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值