最大似然估计(MLE)和最大后验(MAP)

本文探讨了最大似然估计(MLE)和最大后验概率(MAP)在频率学派和贝叶斯学派中的应用。MLE是通过最大化似然函数来估计参数,而MAP则结合先验知识,通过最大化后验概率来确定参数。两者的主要区别在于MAP考虑了先验概率的影响。
摘要由CSDN通过智能技术生成

MLE和MAP

两个学派

频率学派
  • 存在唯一真值 θ \theta θ
贝叶斯学派
  • θ \theta θ是一个随机变量,符合一定的概率分布。
  • 在贝叶斯学派里有两大输入和一大输出,输入是先验 (prior)和似然 (likelihood),输出是后验 (posterior)
  • 先验,即 P ( θ ) P(\theta) P(θ) ,指的是在没有观测到任何数据时对 θ \theta θ的预先判断,例如给我一个硬币,一种可行的先验是认为这个硬币有很大的概率是均匀的,有较小的概率是是不均匀的
  • 似然,即 P ( X ∣ θ ) P(X|\theta) P(Xθ),是假设 θ \theta θ已知后我们观察到的数据应该是什么样子的;
  • 后验,即 P ( θ ∣ X ) P(\theta|X) P(θX),是最终的参数分布。

最大似然估计(MLE )-Maximum Likelihood Estimate

  • MLE是频率学派常用的估计方法

  • P ( x ∣ θ ) = argmax ⁡ P ( x 1 , x 2 , … x n ∣ θ ) P(x | \theta)=\operatorname{argmax} P\left(x_{1}, x_{2}, \ldots x_{n} | \theta\right)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值