MLE和MAP
两个学派
频率学派
- 存在唯一真值 θ \theta θ。
贝叶斯学派
- θ \theta θ是一个随机变量,符合一定的概率分布。
- 在贝叶斯学派里有两大输入和一大输出,输入是先验 (prior)和似然 (likelihood),输出是后验 (posterior)。
- 先验,即 P ( θ ) P(\theta) P(θ) ,指的是在没有观测到任何数据时对 θ \theta θ的预先判断,例如给我一个硬币,一种可行的先验是认为这个硬币有很大的概率是均匀的,有较小的概率是是不均匀的
- 似然,即 P ( X ∣ θ ) P(X|\theta) P(X∣θ),是假设 θ \theta θ已知后我们观察到的数据应该是什么样子的;
- 后验,即 P ( θ ∣ X ) P(\theta|X) P(θ∣X),是最终的参数分布。
最大似然估计(MLE )-Maximum Likelihood Estimate
-
MLE是频率学派常用的估计方法
-
P ( x ∣ θ ) = argmax P ( x 1 , x 2 , … x n ∣ θ ) P(x | \theta)=\operatorname{argmax} P\left(x_{1}, x_{2}, \ldots x_{n} | \theta\right)