深度学习笔记——Attention Model(注意力模型)学习总结

深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的。这就是深度学习里的Attention Model的核心思想。

AM刚开始也确实是应用在图像领域里的,AM在图像处理领域取得了非常好的效果!于是,就有人开始研究怎么将AM模型引入到NLP领域。最有名的当属“Neural machine translation by jointly learning to align and translate”这篇论文了,这篇论文最早提出了Soft Attention Model,并将其应用到了机器翻译领域。后续NLP领域使用AM模型的文章一般都会引用这篇文章(目前引用量已经上千了!!!)

如下图所示,机器翻译主要使用的是Encoder-Decoder模型,在Encoder-Decoder模型的基础上引入了AM,取得了不错的效果:


Soft Attention Model:

这里其实是上面图的拆解,我们前面说过,“Neural machine translation by jointly learning to align and translate”这篇论文提出了soft Attention Model,并将其应用到了机器翻译上面。其实,所谓Soft,意思是在求注意力分配概率分布的时候,对于输入句子X中任意一个单词都给出个概率,是个概率分布。

即上图中的ci是对Encoder中每一个单词都要计算一个注意力概率分布,然后加权得到的。如下图所示:


其实有Soft AM,对应也有一个Hard AM。既然Soft是给每个单词都赋予一个单词对齐概率,那么如果不这样做,直接从输入句子里面找到某个特定的单词,然后把目标句子单词和这个单词对齐,而其它输入句子中的单词硬性地认为对齐概率为0,这就是Hard Attention Model的思想。Hard AM在图像里证明有用,但是在文本里面用处不大,因为这种单词一一对齐明显要求太高,如果对不齐对后续处理负面影响很大。

但是,斯坦福大学的一篇paper“Effective Approaches to Attention-based Neural Machine Translation”提出了一个混合Soft AM 和Hard AM的模型,论文中,他们提出了两种模型:Global Attention Model和Local Attention Model,Global Attention Model其实就是Soft Attention Model,Local Attention Model本质上是Soft AM和 Hard AM的一个混合。一般首先预估一个对齐位置Pt,然后在Pt左右大小为D的窗口范围来取类似于Soft AM的概率分布。

Global Attention Model和Local Attention Model

评论 15
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值