关键词是一篇文档中表达的主要话题,处理文档或句子时,提取关键词是最重要的工作之一,这在NLP中也是一个十分有用的task。
常见的关键词提取方法有:TF-IDF关键词提取方法、Topic-model关键词提取方法和RAKE关键词提取。
TF-IDF:
使用TF-IDF提取关键词的方法十分好理解,TF衡量了一个词在文档中出现的频率,一个文档中多次出现的词总是有一定的特殊意义,但是并不是所有多次出现的词就都是有意义的,如果一个词在所有的文档中都多次出现,那么这个词就没有什么价值了。
TF-IDF就很好地衡量了这些因素:TF= (词在文档中出现的次数)/ (文章总词数),IDF= log(语料库中文档综述/(包含该词的文档数+1))
TF-IDF= TF* IDF
TF-IDF值越大,则这个词成为一个关键词的概率就越大。
Topic-model:
使用主题模型提取关键词的关键思想是认为文章是由主题组成的,而文章中的词是以一定概率从主题中选取的,即文章与词之间存在一个主题集合。不同的主题下,词出现的概率分布是不同的。
根据LDA主题模型的学习可以获取文档的主题词集合。
RAKE关键词提取:
RAKE(Rapid Automatic Keyword Extr