caffe绘制训练过程的loss和accuracy曲线

转载 2016年05月31日 12:48:15

转自:http://blog.csdn.net/u013078356/article/details/51154847

作者:csuwujiyang

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/extra/plot_training_log.py.example ,使用方法如下:

1.记录训练日志

在训练过程中的命令中加入一行参数 ,实现Log日志的记录

  1. TOOLS=./build/tools  
  2. GLOG_logtostderr=0 GLOG_log_dir=deepid/deepid2/Log/ \  
  3. $TOOLS/caffe train \  
  4.   --solver=deepid/deepid2/deepid_solver.prototxt  

其中目录改成自己系统的目录,这样训练结束之后,会在Log文件夹中生成每次训练的Log日志


2.解析训练日志

将最上面说的3个脚本文件拷贝到Log 文件夹下,执行:

  1. ./parse_log.sh caffe.wujiyang-ubuntu.wujiyang.log  

后面的参数为log文件名,这样就会在当前文件夹下生成一个.train文件和一个.test文件


3.生成图片

执行


  1. ./plot_training_log.py.example 0  save.png caffe.wujiyang-ubuntu.wujiyang.log  

就可以生成训练过程中的Test accuracy  vs. Iters 曲线,其中0代表曲线类型, save.png 代表保存的图片名称

caffe中支持很多种曲线绘制,通过指定不同的类型参数即可,具体参数如下


  1. Notes:  
  2.     1. Supporting multiple logs.  
  3.     2. Log file name must end with the lower-cased ".log".  
  4. Supported chart types:  
  5.     0: Test accuracy  vs. Iters  
  6.     1: Test accuracy  vs. Seconds  
  7.     2: Test loss  vs. Iters  
  8.     3: Test loss  vs. Seconds  
  9.     4: Train learning rate  vs. Iters  
  10.     5: Train learning rate  vs. Seconds  
  11.     6: Train loss  vs. Iters  
  12.     7: Train loss  vs. Seconds  

最后,看一下效果



举报

相关文章推荐

线性回归

一、单变量线性回归1、决策函数hθ(x)h_\theta(x) 建立输入x(特征)和输出y的映射关系,用于对未知或者无法观测的数据进行预测,即我们所需要的模型。 hθ(x)=θ0+θ1xh_\thet...

添加项目中package的搜索路径

添加package的搜索路径 打开配置文件bashrc vim ~/.bashrc 在文档的最后面加入项目的路径即可(不需要具体到包名) export PYTHONPATH="...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

数据挖掘领域十大经典算法初探

数据挖掘领域十大经典算法初探 译者:July   二零一一年一月十五日-----------------------------------------参考文献:国际权威的学术组织ICDM,于06年1...

wpf中如何将窗口设置为透明

wpf中如何将窗口设置为透明

csdn如何转载别人的文章

##转载于:http://blog.csdn.net/jiangping_zhu/article/details/18044109 ##作者:包心菜加糯米饭 1、找到要转载的文章,用chrome浏览...
  • mzpmzk
  • mzpmzk
  • 2016-05-24 10:56
  • 8390

Base64

using system; namespace shapbse64 { /// /// 有关base64编码算法的相关操作 ///by 自由奔腾(wgscd) /// ...

十二之续、快速排序算法的深入分析

十二之续、快速排序算法的深入分析                                   ...

1212全民疯抢五折韩版裙摆双排扣修身可爱毛呢大衣长外套女

促销价格 : 238.0 元 掌柜 : 日韩流行风2011 信用 : 30天累计售出 : 件 宝贝与描述相符 : 4.7高于8.22% 卖家的服务态度 : 4.8持平-------- 卖...

1、Python 基本数据结构

一、线性数据结构1. 线性数据结构的特点 数据项之间只存在先后的次序关系,新的数据项加入到数据集中时,只会加入到原有某个数据项之前或之后 线性结构总有两端:左右端、前后端、顶端底端等,但两端的称呼并不...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)