欧几里得几何(1)Alpha

这是一个基于尺规作图的欧几里得几何游戏应用,包含多个版本如Alpha至Theta等。通过不同的教程帮助玩家理解并掌握欧几里得几何的基本原理及解题技巧。

欧几里得几何

apk下载:https://blog.csdn.net/nameofcsdn/article/details/119086279

这是一个尺规作图的游戏。

目录:

欧几里得几何(1)Alpha

欧几里得几何(2)Beta 

欧几里得几何(3)Gamma 

欧几里得几何(4)Delta 

欧几里得几何(5)Epsilon

欧几里得几何(6)Zeta

欧几里得几何求解——建模实践

欧几里得几何(7)Eta

欧几里得几何(8)Theta

教程:

   

   

   

   

(1)

   

   

(2)

   

(教程)

(3)

   

(4)

   

(5)

   

   

(6)

   

(7)

   

   

### Alpha Shapes 算法原理 Alpha Shapes 是一种用于从点云数据中提取几何特征的技术,特别是曲面边界信息。此方法能够有效地捕捉并描述复杂形状的边界特性。 #### 几何基础与定义 Alpha Shapes 的概念建立在 Delaunay 三角剖分之上。对于给定的一组离散点集 \( P \),Delaunay 三角剖分会创建一组不重叠的最大化角度三角形覆盖这些点。在此基础上引入了一个参数 &alpha; (Alpha), 它控制着哪些三角形会被保留下来作为最终的 Alpha Shape 结构的一部分[^1]。 当考虑三维空间内的点时, Alpha 形状可以通过 CGAL 库中的 `CGAL::Alpha_shape_3` 类实现构建和操作。这种结构不仅限于简单的二维平面图形,在更高维度上同样适用,并且可以根据不同应用场景调整细节程度[^3]。 #### 参数 Alpha 的作用机制 - **小 Alpha 值**: 当设定较低的 Alpha 数值时,只有非常接近彼此的点之间才会形成连接关系;因此得到的结果会更加细致精确地反映原始物体的真实外形。 - **大 Alpha 值**: 随着 Alpha 取值增大,则允许较远距离之外也存在关联可能性,从而使得整体形态趋于简化和平滑处理后的近似版本[^2]. 具体来说: - 如果两个顶点间的欧几里得距离大于当前指定的 Alpha 值,则它们不会被连成一条边; - 若某条边上任意一点到对面最近邻的距离超过了 Alpha ,那么这条边也不会存在于最后形成的 Alpha Shape 中[^4]。 #### 边界提取过程 为了从点云中获取有意义的信息,需要经历以下几个阶段: 1. 构建初始的 Delaunay 三角网格; 2. 根据选定的 Alpha 值过滤掉不符合条件的三角单元; 3. 将剩余部分组合起来构成完整的 Alpha Shape 表达形式; 4. 进一步分析所得模型以识别特定类型的表面属性或内部结构特点[^5]. ```cpp // C++ code snippet using PCL library to compute alpha shapes #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d.h> #include <pcl/surface/gp3.h> int main(int argc, char** argv){ pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // Load point cloud data from a file or other source double alpha_value = 0.5; // Set your desired alpha value here // Perform the actual computation of alpha shape... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值