深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-04-基于Python的LeNet之MLP

本文介绍了使用Python实现基于LeNet的单隐层多层感知机(MLP)模型,详细讲解了模型公式、激活函数、权值初始化以及代价函数。通过添加规则化项防止过拟合,最终应用于MNIST手写数字识别任务。
摘要由CSDN通过智能技术生成

原文地址可以查看更多信息

  本文主要参考于:Multilayer Perceptron
  python源代码(github下载  CSDN免费下载)

  本文主要介绍含有单隐层的MLP的建模及实现。建议在阅读本博文之前,先看一下LR的实现因为LR是简化版的MLP。LR不含有单隐层,则其输入层直接连接到输出层。从何处可以看出LR是输入层直接连接输出层?借用上一博文的公式: P(Y=i|x,W,b)=softmaxi(Wx+b) 。其中, x 是输入层, softmax 是激活函数, P 就是输出层了。我们将其化简并转换为一般神经网络表达式: f(x)=g(Wx+b) ,其中 g 就是激活函数, f(x) 就是输出层了。可见输入层经过激活函数得到的结果就是输出了。很简单吧。

  那么MLP的模型公式和LR又有什么不同呢?下面来看一下MLP的模型建立。

一、模型

MLP结构示意图

  从MLP的结构图中可以看出输入层与隐藏层全连接,然后,隐藏层与输出层全连接。那么整体的函数映射就是 fRDRL ,其中 D 是输入向量 x 的维度, L 是输出向量 f(x) 的维度。用矩阵表示整个三层之间的关系如下:

   f(x)=G(W(2)(S(W(1)x+b(1)))+b(2))

  其中, b(1),b(2) 分别是三层之间(输入层与隐层、隐层与输出层之间)的偏置向量; W(1),W(2) 分别是三层之间的权值矩阵;而 S,G 是分别是三层之间的激活函数。

  对于连接单隐层的的表达式 h(x)=Φ(x)=S(W(1)x+b(1)) ,其激活函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值