一、巴什博奕(Bash Game)
基本描述:
只有一堆n个石子,两个人轮流从这堆石子中取石子,规定每次至少取一个,最多取m个,最后取完的人获胜。
分析:
- 当n <= m的时候,显然先手获胜,因为一次就能取完。
- 当n = m+1 的时候,由于先手最多取走m个,无论其取走多少个,剩下的后手均可以一次取完,显然后手胜。
- 根据以上分析,我们可以将n写成 n = (m+1) * r + s 的形式。对于先手玩家,我们可以取走s个,给对方造成剩下(m+1) 整数倍的情形。此时无论对手取走多少个,假设对手取走k个, 我们一定可以做到取走 (m+1-k)个,此时剩下(m+1) * (r-1)个,那么留给对方又是(m+1)的整数倍,如此就可以保证 先手 取胜。
结论:
- 当 n <=m 时,先手必胜。
- 当 n % (m+1) = 0时,后手必胜。
- 当 n % (m+1) != 0时,先手必胜。
其中上述的情况1和3可以合并,故:
- 当 n % (m+1) = 0时,后手必胜。
- 当 n % (m+1) != 0时,先手必胜。
注意:
- 变形玩法:两个人轮流报数,每次至少1个数,最多报10个数字,谁先报到100取胜。
练习:
- HDU 1846
- HDU 2149
- HDU 2188
- HDU 4764
二、PN点分析
什么是PN点
- P点,即必败点。前一个选手(Previous player)将取胜的位置称为必败点。
- N点,即必胜点。下一个选手(Next player)将取胜的位置称为必胜点。
PN点的属性
- 所有终结点均为必败点(P点);
- 从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点);
- 无论如何操作,必败点(P点)都只能进入必胜点(N点)。