博弈论快速入门

一、巴什博奕(Bash Game)

基本描述:

只有一堆n个石子,两个人轮流从这堆石子中取石子,规定每次至少取一个,最多取m个,最后取完的人获胜。

分析:

  1. 当n <= m的时候,显然先手获胜,因为一次就能取完。
  2. 当n = m+1 的时候,由于先手最多取走m个,无论其取走多少个,剩下的后手均可以一次取完,显然后手胜。
  3. 根据以上分析,我们可以将n写成 n = (m+1) * r + s 的形式。对于先手玩家,我们可以取走s个,给对方造成剩下(m+1) 整数倍的情形。此时无论对手取走多少个,假设对手取走k个, 我们一定可以做到取走 (m+1-k)个,此时剩下(m+1) * (r-1)个,那么留给对方又是(m+1)的整数倍,如此就可以保证 先手 取胜。

结论:

  1. 当 n <=m 时,先手必胜。
  2. 当 n % (m+1) = 0时,后手必胜。
  3. 当 n % (m+1) != 0时,先手必胜。

其中上述的情况1和3可以合并,故:

  1. 当 n % (m+1) = 0时,后手必胜。
  2. 当 n % (m+1) != 0时,先手必胜。

注意:

  1. 变形玩法:两个人轮流报数,每次至少1个数,最多报10个数字,谁先报到100取胜。

练习:

  1. HDU 1846
  2. HDU 2149
  3. HDU 2188
  4. HDU 4764

二、PN点分析

什么是PN点

  1. P点,即必败点。前一个选手(Previous player)将取胜的位置称为必败点。
  2. N点,即必胜点。下一个选手(Next player)将取胜的位置称为必胜点。

PN点的属性

  1. 所有终结点均为必败点(P点);
  2. 从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点);
  3. 无论如何操作,必败点(P点)都只能进入必胜点(N点)。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值