http://blog.csdn.net/pipisorry/article/details/39249337
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。即只有两个因子的数叫做素数。例如2,3,5,7,11。
不超过n的素数有个。
测试一个数是否是素数
解法1:两次循环,假设求小于N的所有素数。一次用N-1之间的所有数去除,如果能被整除这个数肯定不是素数。否则是素数。
改进1:只要除以N/2之间的所有数字就可以。
改进2:只要除以“这个数的平方根+1”(假设为k)之间的所有数字就可以。因为:当我们使用x除以2的时候,如果不能整除,说明了x肯定不能被 x/(x/2)整除;使用x除以大于k的时候,如果能整除,那结果必然小于k,而小于k的数我们在循环除的时候已经计算过了;所以只需要除以小于k的数字。
这个解法更适用于“测试一个数是否是素数”的问题。
找出N以内的所有素数
解法2:埃氏筛法/埃拉托斯特尼筛(优于解法1):2是素数,那么所有2的倍数,4,6,8就都不是素数,因为其至少含有一个因子2. 同理,3的所有倍数也不是素数。 同理,5的所有倍数也不是素数。 这样考虑,每当我们确定一个素数的时候,就可以确定一大批数不是素数,这些肯定不是素数的数就不用再做素性测试了。
// n 以内的素数
int sieve(int n,vector<int> &prime){
int p=0;
// is_prime[0] 表示数字0 是不是素数
// is_print[1] 表示数字1是不是素数
// is_print[n] 表示数字n是不是素数
vector<bool> is_prime(n+1,true);
is_prime[0] = false; //0 不是素数,
is_prime[1] = false; //1 不是素数
for(int i=2;i<=n;i++){
// 初始的时候,2是素数,is_prime[1]对应2
if(is_prime[i]){
prime.push_back(i);
p++;
for(int j=i*2;j<=n;j += i){
is_prime[j] = false;
}
}
}
return p;
}
改进1:所有除二以外的质数都为奇数,所以只需在奇数中筛选即可。这样i++可以变成i+=2。
改进2:大于三的素数都可以表示成为的形式,可以提前is_prime初始化非这种形式的数。
计算N以下所有素数的和
Hedgehog算法
[Project Euler第10题(Summation of primes )]
from:http://blog.csdn.net/pipisorry/article/details/39249337
ref: