质数问题/素数问题

http://blog.csdn.net/pipisorry/article/details/39249337

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。即只有两个因子的数叫做素数。例如2,3,5,7,11。

不超过n的素数有个。

 

测试一个数是否是素数

解法1:两次循环,假设求小于N的所有素数。一次用N-1之间的所有数去除,如果能被整除这个数肯定不是素数。否则是素数。

改进1:只要除以N/2之间的所有数字就可以。

改进2:只要除以“这个数的平方根+1”(假设为k)之间的所有数字就可以。因为:当我们使用x除以2的时候,如果不能整除,说明了x肯定不能被 x/(x/2)整除;使用x除以大于k的时候,如果能整除,那结果必然小于k,而小于k的数我们在循环除的时候已经计算过了;所以只需要除以小于k的数字。

这个解法更适用于“测试一个数是否是素数”的问题。

 

找出N以内的所有素数

解法2:埃氏筛法/埃拉托斯特尼筛(优于解法1):2是素数,那么所有2的倍数,4,6,8就都不是素数,因为其至少含有一个因子2. 同理,3的所有倍数也不是素数。 同理,5的所有倍数也不是素数。 这样考虑,每当我们确定一个素数的时候,就可以确定一大批数不是素数,这些肯定不是素数的数就不用再做素性测试了。

// n 以内的素数
int sieve(int n,vector<int> &prime){
    int p=0;
    // is_prime[0] 表示数字0 是不是素数
    // is_print[1] 表示数字1是不是素数
    // is_print[n] 表示数字n是不是素数
    vector<bool> is_prime(n+1,true);
    is_prime[0] = false;  //0 不是素数,
    is_prime[1] = false; //1 不是素数
    for(int i=2;i<=n;i++){
        // 初始的时候,2是素数,is_prime[1]对应2
        if(is_prime[i]){
            prime.push_back(i);
            p++;
            for(int j=i*2;j<=n;j += i){
                is_prime[j] = false;
            }
        }
    }
    return p;
}

改进1:所有除二以外的质数都为奇数,所以只需在奇数中筛选即可。这样i++可以变成i+=2。

改进2:大于三的素数都可以表示成为​的形式,可以提前is_prime初始化非这种形式的数。

[算法专题_素数问题]

皮皮blog

 

计算N以下所有素数的和

Hedgehog算法

[Project Euler第10题(Summation of primes )]

[求十亿内所有质数的和,怎么做最快?]

from:http://blog.csdn.net/pipisorry/article/details/39249337

ref:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值