组合预测模型

组合预测模型---基于R语言的模型组合 

组合预测模型的普遍形式为各个单项预测模型的加权平均, 因此组合预测模型的重点在于加权系数的确定。如果对各个单项预测模型的加权系数赋值合理, 那么整个组合预测模型的预测精度也会相应提高。
目前常用的方法有算术平均法、 最优权数法、 方差倒数法等
方差倒数法是 Bates 和 Granger 曾提出的, 其基本原理是: 首先计算各个单项预测模型的误差平方和ej, 然后通过整体误差平方和最小的原则对各单项预
测模型的权数进行赋值

示例:

c=c(1:20)  真实值
b=c-0.1  预测模型1预测的值
a=c-0.3  预测模型2预测的值

方差倒数法
e1=sum((c-b)^2)
e2=sum((c-a)^2)

w1=(1/e1)/(1/e1+1/e2)
w2=(1/e2)/(1/e1+1/e2)

最后的预测值x=w1*a+w2*b


构造损失函数-求最优


示例:

构造损失函数
e1t=sum(c-b)
e2t=sum(c-a)
------------------推导
ft=w1*a+w2*b
et=c-w1*b-w2*a=w1*e1t+w2*e2t
j=et^2=(w1*e1t+w2*e2t)*(w1*e1t+w2*e2t)=w1^2*e1t^2+2*w1*w2*e1t*e2t+w2^2*e2t
=WT*En*W
WT=(w1,w2)--1xn矩阵
En=[ei*ej]---nxn矩阵
  e1t^2     e1t*e2t
  e1t*e2t   e2t^2
W=[w1  ---nx1矩阵
   w2]  
Rn=t(t(rep(1,2)))  nx1的全是1的矩阵   
拉格朗日乘数法
W*=(En^-1)*Rn/Rn^T*(En^-1)*Rn  En的逆矩阵*Rn/Rn的转置*En的逆矩阵*Rn
J*=1/Rn^T*(En^-1)*Rn   1//Rn的转置*En的逆矩阵*Rn
---------------------
En=matrix(rep(0,4),nrow=2,ncol=2)
En[1,1]=e1t^2
En[1,2]=e1t*e2t
En[2,1]=e1t*e2t
En[2,2]=e2t^2
Rn=t(t(rep(1,2)))
#solve(En) #矩阵的逆
library("MASS")
#ginv(En)  #矩阵的广义逆
#En%*%Rn等效crossprod(En,Rn) #矩阵的乘法
w=(ginv(En)%*%Rn)/(t(Rn)%*%ginv(En)%*%Rn)[1,1]



组合预测模型是一种将多个单一预测模型结合起来,以提高预测准确性和稳定性的方法。在MATLAB中,可以使用多种方法来实现组合预测模型。 一种常见的组合预测模型是集成学习方法,其中包括以下几种常见的技术: 1. Bagging(装袋法):通过随机有放回地从原始数据集中抽取样本,构建多个基本模型,然后通过投票或平均的方式进行预测。 2. Boosting(提升法):通过迭代地训练一系列弱分类器,每次训练都会调整样本权重,使得前一个弱分类器分类错误的样本在后续训练中得到更多关注。 3. 随机森林(Random Forest):通过构建多个决策树,并通过投票的方式进行预测。每个决策树都是基于随机选择的特征子集和样本子集构建的。 除了集成学习方法外,还有其他一些组合预测模型的方法,例如: 1. 堆叠(Stacking):通过将多个基本模型的预测结果作为输入,再训练一个元模型来进行最终的预测。 2. 融合(Fusion):将多个基本模型的预测结果进行加权平均或加权投票,得到最终的预测结果。 3. 混合(Blending):将训练数据集分成两个部分,一部分用于训练基本模型,另一部分用于训练元模型。 以上只是组合预测模型的一些常见方法,在MATLAB中可以使用相关的函数和工具箱来实现这些方法。你可以参考MATLAB的文档和示例代码来了解更多详细信息。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值