1 神经网络反向传播算法推导流程

原创 2017年01月03日 10:10:54

下面这俩篇文章不错

Back-propagation, an introduction

1 why 反向传播算法?

  • 1.神经网络损失函数是什么?
  • 2.怎样通过损失函数来更新模型参数,即w,b?
  • 3.重点是如何求损失函数对每一层w,b的导数,假如很多层,如何计算更有效?
  • 4.更新的表达式是什么?

2 反向传播算法的优点?

通过下一层的参数更新值来求这一层的更新值,加快求导过程,即后向传播算法。

3 反向传播算法推导总流程

  • 1.参数定义,以及明确我们的目标是利用反向传播原理来加快对参数求导的过程!!!
  • 2.最后一层对w,b的导数是什么?
  • 3.如何利用后面的层来更新前面的层?即后面层与前面层的关系!
  • 4.权重更新公式!

下图对应上述几个步骤:
这里写图片描述
最后多层推导过程及更新公式可以参考这个:
反向传播算法(过程及公式推导)
多层神经网络BP算法 原理及推导

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

深度|神经网络和深度学习简史(第一部分):从感知机到BP算法

导读:这是《神经网络和深度学习简史》第一部分。这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来。 深度学习掀起海啸...

转发:神经网络BP算法简单推导

 http://liuli1735.github.io/2014/09/21/Neural-networks.html 神经网络BP算法简单推导 2014-09-21 #machin...

反向传播算法(过程及公式推导)

反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。

理解back propagation反向传播

作用首先需要明白back propagation的作用: 深度学习的训练是成本函数(cost function)最小化的过程,一般采取梯度下降法求解。那么怎么计算梯度呢?这就要用到back prop...

从神经网络到BP算法(纯理论推导)

本文会从最基本的神经网络结构开始,一步步推导,最终得到一个神经网络利用BP算法进行训练的完整过程,以及中间会用到的公式的推导。

BP神经网络公式推导及实现(MNIST)

BP神经网络公式推导及实现(MNIST)

机器学习之神经网络bp算法推导

这是一篇学习UFLDL反向传导算法的笔记,按自己的思路捋了一遍,有不对的地方请大家指点。首先说明一下神经网络的符号: 1. nln_l 表示神经网络的层数。 2. sls_l 表示第 ll 层神经...

Deep Learning 学习笔记(三):神经网络反向传播算法推导

神经网络反向传播算法的推导

前馈神经网络与反向传播算法(推导过程)

前馈神经网络与反向传播算法(推导过程)

深度学习:神经网络中的前向传播和反向传播算法推导

1. 神经网络这是一个常见的神经网络的图:这是一个常见的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)