关闭

K-SVD算法

393人阅读 评论(0) 收藏 举报
分类:

1、目标:找到一个字典D,使得对于给定的训练信号集能获得稀疏表达。具体目标为:

K-SVD算法

2、具体迭代步骤

(1)第一阶段:固定字典 D ,找最好的稀疏矩阵 X 。

K-SVD算法
此为NP难问题。 给定T0,可以采用任何approximation pursuit method去求解 X。论文采用OrthogonalMatching Pursuit (OMP) algorithms。

(2)第二阶段:也是K-SVD与MOD的不同之处,字典D是逐列更新的。

因为矩阵的相乘A*B=A的列向量*B的行向量的线性相加。

假设系数X和字典D都是固定的,要更新字典的第k列dk,令稀疏矩阵X中与dk相乘的第k行记做K-SVD算法,则目标函数可以重写为: 

上式中,DX被分解为K个秩为1的矩阵的和,假设其中K-1项都是固定的,剩下的1列就是要处理更新的第k个。矩阵Ek表示去掉原子dk的成分在所有N个样本中造成的误差。

如果在这一步就用SVD更新dkK-SVD算法,SVD能找到距离Ek最近的秩为1的矩阵,但这样得到的系数K-SVD算法不稀疏,换句话说,K-SVD算法与更新dkK-SVD算法的非零元所处位置和value不一样。那怎么办呢?直观地想,只保留系数中的非零值,再进行SVD分解就不会出现这种现象了。所以对EkK-SVD算法做变换,K-SVD算法中只保留x中非零位置的,Ek只保留dkK-SVD算法中非零位置乘积后的那些项。形成K-SVD算法,将K-SVD算法SVD分解,更新dk

 这里因为X的系数很多是0的,所以我们可以用E的SVD分解出来的E=UWV;W是E的特征向量的根号,很多是0可以得到X。

3、K-SVD总可以保证误差单调下降或不变,但需要合理设置字典大小和稀疏度。

 

4、在Michael Elad的主页上有KSVD的matlab代码下载:http://www.cs.technion.ac.il/~elad/software/。感觉速度还是有点慢。

    A newer version with various improvements, created by Ron Rubinstein, is available in his webpag:

http://www.cs.technion.ac.il/~ronrubin/software.html

 

function [A,x]= KSVD(y,codebook_size,errGoal) 
%============================== 
%input parameter 
% y - input signal 
% codebook_size - count of atoms 
%output parameter 
% A - dictionary 
% x - coefficent 
%============================== 
if(size(y,2)<codebook_size) 
   disp('codebook_size is too large or training samples is too small'); 
   return; 
end 
% initialization 
[rows,cols]=size(y);
 r=randperm(cols); 
A=y(:,r(1:codebook_size)); 
A=A./repmat(sqrt(sum(A.^2,1)),rows,1); 
ksvd_iter=10; 
for k=1:ksvd_iter 
 % sparse coding 
        x=OMP(A,y,5.0/6*rows); 
  % update dictionary 
    for m=1:codebook_size 
       mindex=find(x(m,:)); 
       if ~isempty(mindex) 
            mx=x(:,mindex); mx(m,:)=0; my=A*mx; resy=y(:,mindex); 

            mE=resy-my; [u,s,v]=svds(mE,1); A(:,m)=u; x(m,mindex)=s*v';
       end 
   end 
end

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:468223次
    • 积分:12347
    • 等级:
    • 排名:第1138名
    • 原创:732篇
    • 转载:324篇
    • 译文:14篇
    • 评论:35条
    最新评论