opencv函数库之机器学习
文章平均质量分 89
qq_2773878606
学生
展开
-
贝叶斯分类器(Normal Bayes 分类器)
Normal Bayes 分类器 这个简单的分类器模型是建立在每一个类别的特征向量服从正态分布的基础上的(尽管,不必是独立的),因此,整个分布函数被假设为一个高斯分布,每一类别一组系数。当给定了训练数据,算法将会估计每一个类别的向量均值和方差矩阵,然后根据这些进行预测。 CvNormalBayesClassifier 对正态分布的数据的贝叶斯分类器 class Cv原创 2015-08-30 10:42:42 · 1271 阅读 · 0 评论 -
Normal Bayes 分类器过程详解
OpenCV的机器学习类定义在ml.hpp文件中,基础类是CvStatModel,其他各种分类器从这里继承而来。 今天研究CvNormalBayesClassifier分类器。 1.类定义 在ml.hpp中有以下类定义: [cpp] view plaincopyprint? class CV_EXPORTS_W CvNormalBa转载 2015-08-30 10:43:52 · 939 阅读 · 0 评论 -
K-近邻分类算法KNN
K-近邻(K-Nearest Neighbors, KNN)是一种很好理解的分类算法,简单说来就是从训练样本中找出K个与其最相近的样本,然后看这K个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。 KNN算法的步骤 计算已知类别数据集中每个点与当前点的距离;选取与当前点距离最小的K个点;统计前K个点中每个类别的样本出现的频率;返回前K个点出现频率最高的类别作为当转载 2015-08-30 10:49:20 · 389 阅读 · 0 评论 -
K近邻算法
K近邻算法 这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值。这种方法有时候被称作“基于样本的学习”,即为了预测,我们对于给定的输入搜索最近的已知其相应的特征向量。 [编辑] CvKNearest K近邻类 class CvKNearest : public CvStatModel //原创 2015-08-30 10:48:09 · 453 阅读 · 0 评论