神经网络
文章平均质量分 70
qq_2773878606
学生
展开
-
MATLAB中的ind2vec和vec2ind函数
先说容易理解的vec2ind吧,从命令名字上可以看出是“向量变索引”,假设一个3*6的稀疏矩阵T(1,:)=[0 1 0 0 1 0];T(2,:)=[1 0 1 1 0 0];T(3,:)=[0 0 0 0 0 1],通过vec2ind(T)将会得到什么?因为通过矩阵知道T是6列的,T = 0 1 0 0 1转载 2015-07-25 13:29:36 · 13952 阅读 · 2 评论 -
CNN卷积神经网络
代码的注释:cnnexamples.m[plain] view plaincopyclear all; close all; clc; addpath('../data'); addpath('../util'); load mnist_uint8; train_x = double(reshape(train转载 2015-07-19 15:56:32 · 799 阅读 · 0 评论 -
神经网络
第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度转载 2015-07-19 16:17:37 · 1377 阅读 · 0 评论 -
PNN神经网络预测类别的例子
%% 清空环境变量clc;clear allclose allnntwarn off;warning off;%% 数据载入load data%% 选取训练数据和测试数据Train=data(1:23,:);Test=data(24:end,:);p_train=Train(:,1:3)';t_train=Train(:,4)';p_test=Test(:,1:3)';原创 2015-08-01 20:40:46 · 6294 阅读 · 4 评论 -
LVQ神经网络的分类
%% 清空环境变量clear allclcwarning off%% 导入数据load data.mata=randperm(569);Train=data(a(1:500),:);Test=data(a(501:end),:);% 训练数据P_train=Train(:,3:end)';Tc_train=Train(:,2)';T_train=ind2vec(Tc_tra原创 2015-08-01 21:04:36 · 4217 阅读 · 3 评论 -
BP神经网络算法推导
一:算法推导 神经网络通过模拟人的神经元活动,来构造分类器。它的基本组成单元称为”神经元”,离线情况下如果输入大于某值时,设定神经元处于兴奋状态,产生输出,否则不响应。而这个输入来自于所有其它的神经元。而神经元的响应函数有多种(需要满足可微,这种简单的函数可以拟合任何非线性函数),本文选择sigmod函数。关于基础知识在此不在多说,这里主要介绍一下BP神经网络,并推导权值和阈值的更新公式转载 2015-11-11 17:16:39 · 1210 阅读 · 0 评论 -
神经网络编程入门
本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里转载 2015-11-11 17:20:01 · 626 阅读 · 0 评论 -
模糊神经网络系统1
模糊系统 模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。 模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。所以,它不需要知道系统的精确数学模型。对不确定的非线性的系统来说是一种有效的控制途径。但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集原创 2016-02-25 09:57:09 · 8596 阅读 · 0 评论 -
模糊神经网络系统2
自适应模糊神经推理系统 人工神经网络有较强的自学习和自适应能力,但它类似一个黑箱,缺少透明度,不能很好地表达人脑的推理功能,而模糊系统本身没有自适应能力,限制了其应用。 自适应模糊神经推理系统(Adaptive Neuro-FuzzyInference System)也称为基于网络的自适应模糊推理系统(Adaptive Network-based Fuzzy Inference原创 2016-02-25 10:06:20 · 26785 阅读 · 6 评论 -
模糊神经网络工具箱函数使用
例子:%Fuzzy Control for washerclear all;close all;a=newfis('fuzz_wash');a=addvar(a,'input','x',[0,100]); %Fuzzy Staina=addmf(a,'input',1,'SD','trimf',[0,0,50]);a=addmf(a,'inpu原创 2016-02-25 10:16:09 · 5020 阅读 · 1 评论 -
模糊神经网络PID控制的一个例子
主要是利用输入和输出的限制,得到PID三个参数,然后进行PID系统的控制%Fuzzy Tunning PID Controlclear all;close all;a=newfis('fuzzpid'); %新建模糊推理系统a=addvar(a,'input','e',[-3,3]); %Parameter e 添加模糊语言变量a原创 2016-02-25 10:35:44 · 18271 阅读 · 20 评论 -
Sugeno模型的模糊神经网络的运用
clear all;close all;ts2=newfis('ts2','sugeno');ts2=addvar(ts2,'input','X',[0 5]);ts2=addmf(ts2,'input',1,'little','gaussmf',[1.8 0]);ts2=addmf(ts2,'input',1,'big','gaussmf',[1.8 5]);ts2=addva原创 2016-02-25 10:40:29 · 2678 阅读 · 0 评论 -
从传递函数到差分方程的转换
1、传递函数的形式 假设传递函数为:G(s)=exp^(-0.004s)*400/(s^2+50s); 其中^后表示指数,如:2^3=8;4^2=16; 在matlab里面建立这个传递函数的命令就是:sys=tf(400,[1,50,0],'inputdelay',0.004); 2、脉冲传递函数 把传递函原创 2016-02-26 10:15:14 · 11020 阅读 · 3 评论 -
BP神经网络预测实例
BP神经网络的预测,根据输出层的是线性函数,这样可以拟合出输出和输入之间的函数关系,从而实现输入新的值时,可以预测值,实例:clear;p0=[11.9850 12.1121 12.2389 12.3626 12.4810 12.5768 12.6743 12.7627 12.8453 12.9227 12.9905 13.0756];for i =1:7 p(:原创 2015-07-28 21:39:46 · 17777 阅读 · 1 评论 -
BP神经网络(检测故障的实例)
BP神经网络的运用 输入p=[-1 -1 2 2 ;0 5 0 5];t=[-1 -1 2 2]; 然后生成与输入输出对应的神经网络net=newff(minmax(p),[3 1],{'tansing','perelin'},'traingd');接下来设定网络参数net.p=trainParam.lr=0.05; 学习速率net.trainParam.ep原创 2015-07-24 22:35:07 · 11307 阅读 · 1 评论 -
利用神经网络 遗传算法求得函数极小极大值
clccleartic%% 训练数据预测数据提取及归一化%下载输入输出数据load data1 input output%从1到2000间随机排序k=rand(1,4000);[m,n]=sort(k);%找出训练数据和预测数据input_train=input(n(1:3900),:)';output_train=output(n(1:3900),:)';input原创 2015-07-26 16:02:09 · 6954 阅读 · 0 评论 -
BP神经网络 语音信号分类
BP神经网络预测首先进行训练网络,通过训练使网络具有联想记忆和预测能力,BP神经网络的训练过程包括下面:1、网络的初始化,根据系统输入和输出确定网路的输入层节点数n,隐含层l,和输出层m,初始化输入层隐含层和输出层之间的连接权值和偏移,给定学习速率和激励函数2、隐含层输出的计算,根据输入向量x,输入层和隐含层之间连接的权重w,以及隐含层阈值a,计算隐含层的输出H3、输出层的原创 2015-07-25 22:00:56 · 4840 阅读 · 4 评论 -
基于BP弱分类器用Adaboost的强分类器
1、模型的建立详细代码:%% 该代码为基于BP_Adaboost的强预测器预测%% 清空环境变量clcclear%% 下载数据load data1 input output%% 权重初始化k=rand(1,2000);[m,n]=sort(k);%训练样本input_train=input(n(1:1900),:)';outpu原创 2015-07-26 17:32:41 · 6358 阅读 · 2 评论 -
广义回归神经网络(GRNN)的数据预测
广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好, 网络还可以处理不稳定数据,GRNN的网络结构原创 2015-07-26 21:09:27 · 31382 阅读 · 7 评论 -
基于遗传算法优化的BP神经网络的 非线性函数拟合
遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称原创 2015-07-26 15:36:36 · 11830 阅读 · 1 评论 -
SVM分类的一个例子
SVM分类的过程:1、选定训练集和测试集------------------->数据的预处理---------------------------------》训练SVM----------------------------------》预测测试集------------------------》分类的正确率close all;clear;clc;format compac原创 2015-07-27 14:34:26 · 4276 阅读 · 0 评论 -
自组织神经网络的实现
1、可以调用MATLAB工具箱里的函数创建竞争性神经网络: 主要进行分类:newc(p,s,KLR,CLR) --------------------------------------p表示输入的范围,s-------------------------------表示神经元的个数 KLR表示Kohonen学习速率,--------------原创 2015-07-28 10:54:39 · 1700 阅读 · 0 评论 -
径向基神经网络(实例故障分类)
径向神经网络的创建:调用格式:net=newrbe(p,t,spread) -------------------p t分别为输入和输出样本,spread 为径向神经网络的散布常数或者更高效的神经网络net=newrb(p,t,goal,spread);概率神经网络的创建:P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]',Tc = [1 1原创 2015-07-25 17:16:51 · 2442 阅读 · 2 评论 -
支持向量机的分类
%% SVM Classification 2D examplesclear allclose allclcn = 100; sigma=0.3;[Xapp,yapp,xtest,ytest]=datasets('gaussian',n,0,sigma);%产生n个高斯分布的随机样本数据Xapp=single(Xapp);[Xapp]=normalizemeanst原创 2015-07-28 21:12:10 · 891 阅读 · 0 评论 -
径向基概率神经网络的实例(实现预测,分类)
[filename, pathname] = uigetfile('ST30.xls');file=[pathname filename];x=xlsread(file);[filename, pathname] = uigetfile('NST30.xls');file=[pathname filename];y=xlsread(file);p=[x;y]; p=p'; T=原创 2015-07-28 21:49:39 · 3755 阅读 · 1 评论 -
支持向量回归(SVR)对函数的拟合近似
%% 1D Regression example%close allclear alltic%-------------------creating and plotting data----------------n=50;x=linspace(0,3,n)';xx=linspace(0,3,n)';xi=x;yi=cos(exp(x));y=cos(exp(xx));原创 2015-07-28 21:16:03 · 5587 阅读 · 4 评论 -
Elman神经网络的实例(预测结果,函数回归)
[filename, pathname] = uigetfile('17_1_P.xls');file=[pathname filename];x=xlsread(file);p=[x(:,1),x(:,2),x(:,3),x(:,4),x(:,5),x(:,6);]' t= x(:,7)',[filename, pathname] = uigetfile('17_1_Ptest.xl原创 2015-07-28 21:35:55 · 6266 阅读 · 3 评论 -
神经网络大总结
1、感知神经网络 构造方法:net=newp(PR,S,TF,LF)PR:表示R*2矩阵,表示数据的大小范围,minmax函数就可以S:表示神经元个数,主要表示隐含层和输出层神经元的个数,一般是个向量TF:表示传递函数,一般默认hardlimLF:表示学习函数,一般默认不用写训练方法:net=train(net,P,T)主要作用:主要用于分类2、线性神经原创 2016-03-14 18:22:36 · 1217 阅读 · 0 评论