人眼注视点估计
文章平均质量分 72
qq_2773878606
学生
展开
-
注视点估计(二维法)
1、注视点估计二维法思路:主要是利用瞳孔和角膜反射光斑的向量和屏幕上的注视点进行拟合实验环境:在有近红外灯的前提下进行实验,850-860nm的波长,这种红外灯在瞳孔进行反射,在角膜上形成一个反射亮斑,1、首先进行瞳孔的检测,得到瞳孔的坐标2、进行反射亮斑的位置检测,得到亮斑的坐标3、根据在屏幕上的注视点的位置和瞳孔与亮斑之间的向量的关系进行函数拟合注视点的原创 2015-09-02 11:18:56 · 4324 阅读 · 0 评论 -
regionprops函数用法详解
1、 matlab函数bwareaopen──删除小面积对象格式:BW2 = bwareaopen(BW,P,conn)作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。算法:(1)Determine the connected components. L = bwlabeln(BW, conn);(2)Compute the area of each原创 2015-09-04 22:00:43 · 2261 阅读 · 0 评论 -
人眼中亮斑的检测、定位和去除
在红外线照射人眼时,会产生亮斑,亮斑的像素比其他的像素要高,因此我们选择一个好的阈值对图像进行分割,但是怎么选择合适的阈值?这里我们可以用迭代阈值的办法对图像进行分割,但是到合适的阈值时,怎么评价阈值的好坏,需要一个合适的评价的条件,确定阈值。。这个评价的条件的确定:首先我们假设阈值像素值是图像最大的灰度值,因为亮斑区域的像素很高,一般情况下,亮斑中像素高的部分可以被分原创 2015-09-04 22:19:14 · 4145 阅读 · 0 评论 -
bwlabel函数和regionprops函数用法详解
1、bwlabel是用来标记二维的二值图像中的连通组的,简言之,就是黑背景下面有多少白的块,也就是从黑背景甄别白块块的。 L = BWLABEL(BW,N) returns a matrix L, of the same size as BW, containing labels for the connected components in BW. N 即为4连通或8连通[L,NUM]原创 2015-09-04 21:58:47 · 11955 阅读 · 0 评论 -
人眼中亮斑的检测、定位和去除(3)
这一部分主要讲的是怎么去 除区域,,如果我们知道亮点周围的像素值,,那么我们可以用插值的方法把亮点部分的像素插值成跟亮斑周围像素值这里如果想要精确的去除亮斑我们可以用径向基函数插值法这里我们用线性插值,简单操作假设我们已知坐标(x0,y0)与(x1,y1),要得到[x0,x1]区间内某一位置x在直线上的y值。根据图中所示,假设AB上有一点(x,y),可作原创 2015-09-05 22:44:30 · 1986 阅读 · 0 评论 -
怎么求人眼图像中的噪声
在图像中的人眼图像中,一般会产生两种噪声,1、shot noise(散粒噪声)) 2、line noise(线路噪声)减小这两种噪声的方法:1、shot noise(散粒噪声)一般使用5 * 5的高斯滤波器,方差是2的滤波器,这样可以很好的减少散粒噪声2、line noise(线路噪声)可以使用归一化的因子进行调节,根据当前图像每行的均值像素跟上一原创 2015-09-04 21:45:59 · 723 阅读 · 0 评论 -
人眼中亮斑的检测、定位和去除(2)
上一章中,运用matlab得到的亮斑半径只是一个大概的值,这里介绍一种可以精确得到亮斑半径的方法,,,,高斯方法:在这里我们假设亮斑的强度平面是服从symmetric bivariate Gaussian distribution(对称二元高斯分布),如果我们找到一个半径,在这个半径时,这时亮斑的强度下降的最大,我们这时认为这个半径时亮斑的半径,,问题怎么求这个半径???这原创 2015-09-04 23:04:15 · 1316 阅读 · 0 评论 -
三角剖分(delaunay)拓扑结构 高维近邻
在高维数据中,如果想要找到高维数据间的近邻,如果仅仅是使用k-nearnest采样点,由于没有考虑高维数据间的拓扑结构,这样得到的近邻是不准确的,尤其是在进行高维数据间的数据预测(线性插值)时。所以我们要得到的近邻必须保持高维数据间的拓扑结构。 由于在高维空间的拓扑结构是很复杂的,但是在低维数据的拓扑结构是很容易得到的,所以我们可以根据低维数据的拓扑结构得到高维数据的拓扑结构。但原创 2015-12-15 10:16:33 · 2881 阅读 · 0 评论