关闭

欧拉函数及部分性质

标签: 欧拉函数
78人阅读 评论(0) 收藏 举报
分类:

转载自: http://blog.csdn.net/leolin_/article/details/6642096


欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

对于质数p,φ(p) = p - 1。注意φ(1)=1.

欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。

欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

                                 若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。

特殊性质:当n为奇数时,φ(2n)=φ(n)

欧拉函数还有这样的性质:

设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。

int euler(int x)//1到x之间和x互质的数的个数
{
	int i, res=x;
	for (i = 2; i < (int)sqrt(x * 1.0) + 1; i++)
		if(x%i==0)
		{
			res = res / i * (i - 1);
			while (x % i == 0) x /= i; //  保证i 一定是素数
		}
	if (x > 1) res = res / x * (x - 1);
	return res;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:50208次
    • 积分:1495
    • 等级:
    • 排名:千里之外
    • 原创:95篇
    • 转载:9篇
    • 译文:0篇
    • 评论:7条
    最新评论