最小生成树_Prim

原创 2016年06月01日 21:24:12

如何从一个带权图中抽出一棵生成树,使得边权值和最小,这棵生成树就叫做最小生成树。常见的求解最小生成树的算法有 Prim 算法和 Kruskal 算法。

我们先来学习 Prim 算法。首先我们定义带权图 G的顶点集合为 V,接着我们再定义最小生成树的顶点集合为 U,初始集合 U 为空。接着执行以下操作:

首先我们任选一个顶点 x,加入集合 U,并记录每个顶点到当前最小生成树的最短距离。

选择一个距离当前最小生成树最近的、且不属于集合 U 的顶点 v(如果有多个顶点 v,任选其一即可),将顶点 v 加入集合 U,并更新所有与顶点 v 相连的顶点到当前最小生成树的最短距离。

重复第二步操作,直至集合 U 等于集合 V。

最小生成树构造完毕,集合 U 记录了最小生成树的所有边。

分析算法过程,我们可以发现,Prim 算法的思想类似贪心策略,每次都会选择一条与当前最小生成树相连且边权值最小的点。Prim 算法的时间复杂度为 O(V^2)
​​ ),V 为图 GG 顶点总个数,如果加上堆优化的话,可以把时间复杂度降到 O(VlogV+E),其中 E 为图 G 的总边数。Prim 算法一般应用于边较为稠密的图,也就是顶点较少、而边较多的图。

#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;

const int INF = 0x3f3f3f3f;

struct Edge {
    int vertex, weight;
};

class Graph {
private:
    int n;
    bool * visited;
    vector<Edge> * edges;
public:
    int * dist;
    Graph (int input_n) {
        n = input_n;
        edges = new vector<Edge>[n];
        dist = new int[n];
        visited = new bool[n];
        memset(visited, false, n * sizeof(bool));
        memset(dist, 0x3f, n * sizeof(int));
    }
    ~Graph() {
        delete[] dist;
        delete[] visited;
        delete[] edges;
    }
    void insert(int x, int y, int weight) {
        edges[x].push_back(Edge{y, weight});
        edges[y].push_back(Edge{x, weight});
    }
    int prim(int v) {
        int total_weight=0;
        //dis用于标记每个顶点 距离生成树上所有顶点的最短距离
        dist[v]=0;
        for(int i=0;i<n;i++){
            int min_dist=INF,min_vertex;
            for(int j=0;j<n;j++){
                if(!visited[j]&&dist[j]<min_dist){
                    min_dist=dist[j];
                    min_vertex=j;
                }
            }
            total_weight+=min_dist;
            visited[min_vertex]=1;
            for(Edge &j:edges[min_vertex]){
                if(!visited[j.vertex]&&j.weight<dist[j.vertex]){
                       dist[j.vertex]=j.weight;
                }
            }
        }
        return total_weight;
    }
};


int main() {
    int n, m;
    cin >> n >> m;
    Graph g(n);
    for (int i = 0; i < m; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        g.insert(a, b, c);
    }
    cout << g.prim(0) << endl;
    return 0;
}
版权声明:ShirleyPaul原创,未经博主允许不得转载

贪心算法——Prim最小生成树

1、首先介绍一下什么是贪心算法: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。ps:不懂得话可...
  • baidu_28944591
  • baidu_28944591
  • 2016年06月26日 16:50
  • 1762

数据结构:最小生成树--Prim算法

最小生成树 给定一无向带权图,顶点数是n,要使图连通只需n-1条边,若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning ...
  • zhangxiangDavaid
  • zhangxiangDavaid
  • 2014年08月05日 00:30
  • 10278

最小生成树(prim算法与kruskal算法)(模板)

th写的总结,很不错,转载一下:点击打开链接   首先说一下什么是树:     1、只含一个根节点     2、任意两个节点之间只能有一条或者没有线相连     3、任意...
  • zwj1452267376
  • zwj1452267376
  • 2015年08月13日 08:54
  • 1504

c++ 最小生成树之prim算法

//最小生成树 #include #include #include using namespace std; #define MAX_LINE 7 char tree[MAX_LINE][...
  • zdavb
  • zdavb
  • 2015年04月14日 23:52
  • 989

最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)
  • yeruby
  • yeruby
  • 2014年08月16日 18:49
  • 85762

prim最小生成树算法原理

prim 最小生成树算法原理 主要需要了解算法的原理、算法复杂度、优缺点 、刻画和度量指标 评价等 可以查阅相关的文献,这部分内容主要整合了两篇博客的内容 分别是:http://blog.csdn....
  • lynnucas
  • lynnucas
  • 2016年05月03日 16:51
  • 3846

最小生成树Prim算法 堆优化

对于最小生成树prim算法中,我们每次要扫描一遍邻接表才能找到最小的边的点,但是如果利用堆这种数据结构来进行优化,我们可以大大减小这种查找的时间消耗 我们利用邻接表和小根堆来进行优化,下面是代码解析...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年03月19日 14:02
  • 993

最小生成树(二)--prim算法实现以及堆优化

一、最小生成树---prim算法实现 思想: 1、从任意一个顶点开始构造生成树,假设就从1号顶点吧, 首先将顶点1加入生成树中,用一个一维数组book来标记 哪些顶点已经加入了生成树。  2、用...
  • qq_16997551
  • qq_16997551
  • 2016年04月29日 19:59
  • 841

ACM:prim最小生成树题目汇总

1.http://115.28.138.223/view.page?gpid=T18import java.util.Scanner; public class Main{ static fi...
  • EmilSinclair4391
  • EmilSinclair4391
  • 2016年05月03日 19:20
  • 463

最小生成树之prim算法 原理

最小生成树之prim算法 边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。    最小生成树(MST):权值最小的生成树。    生成树和...
  • hnust_xiehonghao
  • hnust_xiehonghao
  • 2014年07月21日 11:09
  • 3384
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最小生成树_Prim
举报原因:
原因补充:

(最多只允许输入30个字)