关闭

最小生成树_Prim

标签: 森林Prim
171人阅读 评论(0) 收藏 举报
分类:

如何从一个带权图中抽出一棵生成树,使得边权值和最小,这棵生成树就叫做最小生成树。常见的求解最小生成树的算法有 Prim 算法和 Kruskal 算法。

我们先来学习 Prim 算法。首先我们定义带权图 G的顶点集合为 V,接着我们再定义最小生成树的顶点集合为 U,初始集合 U 为空。接着执行以下操作:

首先我们任选一个顶点 x,加入集合 U,并记录每个顶点到当前最小生成树的最短距离。

选择一个距离当前最小生成树最近的、且不属于集合 U 的顶点 v(如果有多个顶点 v,任选其一即可),将顶点 v 加入集合 U,并更新所有与顶点 v 相连的顶点到当前最小生成树的最短距离。

重复第二步操作,直至集合 U 等于集合 V。

最小生成树构造完毕,集合 U 记录了最小生成树的所有边。

分析算法过程,我们可以发现,Prim 算法的思想类似贪心策略,每次都会选择一条与当前最小生成树相连且边权值最小的点。Prim 算法的时间复杂度为 O(V^2)
​​ ),V 为图 GG 顶点总个数,如果加上堆优化的话,可以把时间复杂度降到 O(VlogV+E),其中 E 为图 G 的总边数。Prim 算法一般应用于边较为稠密的图,也就是顶点较少、而边较多的图。

#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;

const int INF = 0x3f3f3f3f;

struct Edge {
    int vertex, weight;
};

class Graph {
private:
    int n;
    bool * visited;
    vector<Edge> * edges;
public:
    int * dist;
    Graph (int input_n) {
        n = input_n;
        edges = new vector<Edge>[n];
        dist = new int[n];
        visited = new bool[n];
        memset(visited, false, n * sizeof(bool));
        memset(dist, 0x3f, n * sizeof(int));
    }
    ~Graph() {
        delete[] dist;
        delete[] visited;
        delete[] edges;
    }
    void insert(int x, int y, int weight) {
        edges[x].push_back(Edge{y, weight});
        edges[y].push_back(Edge{x, weight});
    }
    int prim(int v) {
        int total_weight=0;
        //dis用于标记每个顶点 距离生成树上所有顶点的最短距离
        dist[v]=0;
        for(int i=0;i<n;i++){
            int min_dist=INF,min_vertex;
            for(int j=0;j<n;j++){
                if(!visited[j]&&dist[j]<min_dist){
                    min_dist=dist[j];
                    min_vertex=j;
                }
            }
            total_weight+=min_dist;
            visited[min_vertex]=1;
            for(Edge &j:edges[min_vertex]){
                if(!visited[j.vertex]&&j.weight<dist[j.vertex]){
                       dist[j.vertex]=j.weight;
                }
            }
        }
        return total_weight;
    }
};


int main() {
    int n, m;
    cin >> n >> m;
    Graph g(n);
    for (int i = 0; i < m; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        g.insert(a, b, c);
    }
    cout << g.prim(0) << endl;
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15448次
    • 积分:734
    • 等级:
    • 排名:千里之外
    • 原创:59篇
    • 转载:7篇
    • 译文:0篇
    • 评论:0条
    文章分类