最小生成树_Prim

原创 2016年06月01日 21:24:12

如何从一个带权图中抽出一棵生成树,使得边权值和最小,这棵生成树就叫做最小生成树。常见的求解最小生成树的算法有 Prim 算法和 Kruskal 算法。

我们先来学习 Prim 算法。首先我们定义带权图 G的顶点集合为 V,接着我们再定义最小生成树的顶点集合为 U,初始集合 U 为空。接着执行以下操作:

首先我们任选一个顶点 x,加入集合 U,并记录每个顶点到当前最小生成树的最短距离。

选择一个距离当前最小生成树最近的、且不属于集合 U 的顶点 v(如果有多个顶点 v,任选其一即可),将顶点 v 加入集合 U,并更新所有与顶点 v 相连的顶点到当前最小生成树的最短距离。

重复第二步操作,直至集合 U 等于集合 V。

最小生成树构造完毕,集合 U 记录了最小生成树的所有边。

分析算法过程,我们可以发现,Prim 算法的思想类似贪心策略,每次都会选择一条与当前最小生成树相连且边权值最小的点。Prim 算法的时间复杂度为 O(V^2)
​​ ),V 为图 GG 顶点总个数,如果加上堆优化的话,可以把时间复杂度降到 O(VlogV+E),其中 E 为图 G 的总边数。Prim 算法一般应用于边较为稠密的图,也就是顶点较少、而边较多的图。

#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;

const int INF = 0x3f3f3f3f;

struct Edge {
    int vertex, weight;
};

class Graph {
private:
    int n;
    bool * visited;
    vector<Edge> * edges;
public:
    int * dist;
    Graph (int input_n) {
        n = input_n;
        edges = new vector<Edge>[n];
        dist = new int[n];
        visited = new bool[n];
        memset(visited, false, n * sizeof(bool));
        memset(dist, 0x3f, n * sizeof(int));
    }
    ~Graph() {
        delete[] dist;
        delete[] visited;
        delete[] edges;
    }
    void insert(int x, int y, int weight) {
        edges[x].push_back(Edge{y, weight});
        edges[y].push_back(Edge{x, weight});
    }
    int prim(int v) {
        int total_weight=0;
        //dis用于标记每个顶点 距离生成树上所有顶点的最短距离
        dist[v]=0;
        for(int i=0;i<n;i++){
            int min_dist=INF,min_vertex;
            for(int j=0;j<n;j++){
                if(!visited[j]&&dist[j]<min_dist){
                    min_dist=dist[j];
                    min_vertex=j;
                }
            }
            total_weight+=min_dist;
            visited[min_vertex]=1;
            for(Edge &j:edges[min_vertex]){
                if(!visited[j.vertex]&&j.weight<dist[j.vertex]){
                       dist[j.vertex]=j.weight;
                }
            }
        }
        return total_weight;
    }
};


int main() {
    int n, m;
    cin >> n >> m;
    Graph g(n);
    for (int i = 0; i < m; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        g.insert(a, b, c);
    }
    cout << g.prim(0) << endl;
    return 0;
}
版权声明:ShirleyPaul原创,未经博主允许不得转载

最小生成树(Prim算法)

  • 2015年06月13日 23:00
  • 2KB
  • 下载

(prim算法题型一)求最小生成树的权值和、路径、边值的最小和最大值。

1.输出最小生成树个边权值累加和 4 0 4 9 21 4 0 8 17 9 8 0 16 21 17 16 0 #include #include #define MaxInt 0x...

Prim算法最小生成树(C语言)

  • 2014年10月16日 16:31
  • 516B
  • 下载

用Prim算法构造最小生成树

  • 2013年12月07日 20:18
  • 1KB
  • 下载

最小生成树的Prim算法和Kruskal算法java代码实现

最小生成树的Prim算法和Kruskal算法java代码实现

prim算法最小生成树

  • 2008年02月19日 11:11
  • 31KB
  • 下载

数据结构实验 Prim最小生成树

  • 2011年05月24日 20:04
  • 149KB
  • 下载

图之最小生成树-Prim算法和Kruskal算法

Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (...

实现构造最小生成树的Prim算法

  • 2016年12月14日 19:43
  • 3.42MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最小生成树_Prim
举报原因:
原因补充:

(最多只允许输入30个字)