Xilinx FPGA ChipScope的ICON/ILA/VIO核使用

转载 2016年09月20日 20:45:30
使用ChipScope有两种方式:
第一种,使用CoreInsert,可参考下面链接:
这种方法可以快速的使用ICON和ILA核,以及ATC2核,而且不必修改原代码。缺点是不能使用其他核,如VIO核。以及用ILA观测信号时,有的可能被综合器综合掉的信号就观察不到了。
第二种,使用Generator的方法,可参考下面链接,是一个Verilog的使用教程。
http://download.csdn.net/detail/sundonga/8284737
http://download.csdn.net/detail/sundonga/8285149
官方推荐使用方法二,在工程中添加IP核,然后例化到程序中,需要修改原代码,但可以使用所有ChipScope核,且使用灵活。
下面,使用方法二,使用VHDL来完成ICON/ILA/VIO的使用,相关工程文件可从这下载:http://download.csdn.net/detail/sundonga/8284747
1. 以一个8位的加法器为例,写好加法器的代码后,先加入一个ICON核

2. 设置ICON核的参数,由于要与一个ILA核和一个VIO核相连,因此控制口选择2,如下图。

3. 添加ILA核,选择一组观测,且一组观测8位,用来观测我的8位加法器的值。

4. 添加VIO核,设置8个虚拟输入,8个虚拟输出,8个输入接加法器的8位,输出只用了一位接reset。

5. 添加完IP核之后,可以看到工程中除了自己原来写的VHDL和UCF文件,多了三个IP核文件。

6. 之后写一个顶层文件,将mycounter/ICON/ILA/VIO全部例化、连接。然后综合布线,最后点击左下角Analyze Design Using ChipScope。

7. 开发板上电,按图中所示找到设备,加载.bit文件。会看到Device0中有ILA核和VIO核。

8. 双击左侧VIO核,设置虚拟输入AsyncIn[0]为按钮,即可实现虚拟的reset键。

9. 双击左侧Waveform,再单击上方小三角可抓波形,当然我这里没有设置触发,也可以先设置好触发后再抓波形

10. 将加法器的输出建立BUS后,可以使用Bus Plot查看,可以看到是0~255的循环,且使用虚拟输入可清0。

相关文章推荐

Xilinx FPGA ChipScope的ICON/ILA/VIO核使用

基于VHDL的Xilinx ChipScope核使用,讲解了ICON/ILA/VIO核的使用方法。

Vivado Logic Analyzer中VIO核的使用

ChipScope有两种使用的方式:cdc和IP Core。由于VIO的IP只能通过IP的方式来使用,所以IP的方式ChipScope中有重要的意义。 同样,Vivado中的VIO也只能通过IP的...

Xilinx FPGA ChipScope的ICON/ILA/VIO核使用

ChipScope一般常用的核有: 1、ICON(Intergrated Controller)核     所有的核都需要通过JTAG电缆完成计算机和芯片的通信,在ChipScope Pro中,只有I...

vivado----fpga硬件调试 (五) ----找不到ila核问题及解决

WARNING: [Xicom 50-38] xicom: No CseXsdb register file specified for CseXsdb slave type: 0, cse driv...

[IP实例]vivado VIO (virtual input output)虚拟IO使用

一般情况下ILA和VIO都是用在chipscope上使用,VIO可以作为在chipscope时模拟IO。 譬如: 在使用chipscope时需要使用按键出发,但是没有设计按键或者板子不再身...

Vivado ILA调试的没有波形的小问题

WARNING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3. Resoluti...

vivado----fpga硬件调试 (四)----mark_debug

在vivado中fpga功能验证比ise中方便了很多,主要体现在debug的ip核生成以及最后的波形观察和调试上,下面我就从这两个方面说一下vivado的fpga验证调试。     fpga验证的步骤...

chipscope_tutorial_ICON_VIO_ILA

  • 2013-01-16 17:29
  • 237KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)