乘法逆元小结


在求解除法取模问题 (a/b)%m 时,我们可以转化为 (a%(bm))/b , 
但是如果b很大,则会出现爆精度问题,所以我们避免使用除法直接计算。 
可以使用逆元将除法转换为乘法: 
假设b存在乘法逆元,即与m互质(充要条件)。设c是b的逆元,即 bc1(modm) ,那么有 a/b=(a/b)1=(a/b)bc=ac(modm)  
即,除以一个数取模等于乘以这个数的逆元取模。

  1. 逆元求解一般利用扩欧。
  2. m 为质数的时候直接使用费马小定理,m非质数使用欧拉函数。
  3. m 为质数的时候,神奇的线性方法。

扩展欧几里得算法:

要求 a,m 互素。存在唯一解。 
之前总结过扩展欧几里得算法

代码:

int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b != 0){
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }else {
        x = 1;
        y = 0;
    }
    return d;
}
int mod_inverse(int a, int m)
{
    int x, y;
    extgcd(a, m, x, y);
    return (m + x % m) % m;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

费马小定理:

p 是素数的情况下,对任意整数 x 都有 xpx(mod)p 。 
如果 x 无法被 p 整除,则有 xp11(modp) 。 
可以在 p 为素数的情况下求出一个数的逆元, xxp21(modp) xp2 即为逆元。

代码:

利用快速幂求出逆元。
 
 
  • 1
  • 1

欧拉函数:

ϕ(m) 表示小于等于 m 且与 m 互素的正整数的个数。 
如果 x m 互质,则有 xϕ(m)1(modm) ,即 x×xϕ(m)11(modm) xϕ(m)1 即为 x 的逆元。 
m 为质数的情况下, ϕ(m)=m1 ,即为费马小定理。

代码:

关键是求出欧拉函数的值。 
利用欧拉函数的积性性质

对于任意整数 n ,可以将它分解 n=pk11pk22pk33...pkmm ,其中 pi 为质数。

其中 ϕ(n)=ϕ(p1k1)ϕ(pk22)...ϕ(pkmm)

最后转化为 ϕ(n)=n(pi1)/pi

对给定n进行整数分解。时间复杂度 O(n)

int eurler_phi(int n)
{
    int res = n;
    for(int i = 2; i * i <= n; i++){
        if(n % i == 0){
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n != 1) res = res / n * (n - 1);
    return res;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

筛法求欧拉函数值的表,利用埃氏筛法,每次发现质因子就把他的倍数的欧拉函数乘上 (p1)p 。 
ACdreamers博客里介绍,利用定理进行优化 
【update】这个定理是有用的,但是个人觉得他对偶数预处理的写法并没有啥用

当n为奇数时,有 ϕ(2n)=ϕ(n)

因为2n是偶数,偶数与偶数一定不互素,所以只考虑2n与小于它的奇数互素的情况,则恰好就等于n的欧拉函数值。

int euler[maxn];
void euler_phi2()
{
    for(int i = 0; i < maxn; i++)  euler[i] = i;
    for(int i = 2; i < maxn; ++i){
        if(euler[i] == i){
            for(int j = i; j < maxn; j += i){
                euler[j] = euler[j] / i * (i - 1);
            }
        }
    }
}


我们要在线性时间内求出 11,21,(p1)1(modp)  
p  

111(modp)111(modp)

aa11(modp)    1<a<p

k=par=p  mod  a  
p=ka+r       0<r<aka+r0(modp)(ka+r)a1r10(modp)kr1+a10(modp)a1kr1(modp)a1=pa(p  mod  a)1  mod  p=(ppa)(p  mod  a)1  mod  p

inv[1]=1;
for(int i=2;i<=n;i++)
    inv[i]=(p-p/i)*inv[p%i]%p;
  
  
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

同时,也可以据此来递归求出逆元,每次时间复杂度为 O(log2n)

int Get_inv(int n){
    if(n==1)
        return 1;
    return (p-p/n)*(Get_inv(p%n))%p;
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

p  
一组例子,n=7,p=18

人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值