大家好,我是苍何。
准备搬家,在京东上看了打包带,相较于淘宝和拼多多,价格上可以说丝毫没有优势可言。
有时,我又在想,那为什么还要来京东买?
我翻遍了购物车,发现每次的京东购物不是为了贪图次日达,就是图他质量有保证,特别是电子产品,基本就只选京东了。
这样也好,有自己的竞争优势总能让人想起他,就像单纯的贪图便宜我会去拼多多一样,想搞某些 pojie 软件,就去万能的宝。
说到京东,比较好奇的有以下三点:
1、京东内部职级是怎么划分的?
2、不同职级薪资能到多少?
3、校招薪资白菜价能到多少?
我们先来看看京东内部的职级。
通常情况下,校招本科为 T2,硕士为 T3,T3-T6 为京东主力军,通常是社招 3-5 年经验,T7 算是一道坎,差不多算是一线小 leader 了。
可以看到但凡是大公司,对职级都会有严格的划分,每一级什么能力,能拿到多少钱,怎么晋升,都规划的明明白白的。
这样让人容易产生一种错觉,仿佛去了那里就能平步青云,不断晋升,干他一辈子,但往往多数情况还没等来晋升,人就被开了,当初的誓言也成了不臭不响的臭屁。
当然这种好处就是可以有期盼,没有人不喜欢希望。
那这么多职级对应能拿到多少薪资呢?由于 M 系列离普通人太遥远,这里就以技术岗 T 系列来看看。
这里的年包只是 base 薪资+年终奖+股票,还没算上餐补、工龄补贴等这些,年终奖根据最新的是 base 的 8 个月.
等级到了 T7 开始有股权激励,年包能到 100 w 了,T8,T9,T10属于技术专家了,年薪都突破100万。
而 T10 是首席科学家的头衔,是传说中的人中龙凤,薪资待遇 500 万以上(高的离谱😂)。
下面再来看看校招入狗东,能拿到多少钱?
白菜价是普通档,SP 是“特殊offer”的缩写,这类offer比普通offer要高一些,SSP是“超级特殊offer”的缩写通常给予面试中的佼佼者或极为出色的候选人,钱也会更多。
京东狗不狗我不知道,但这薪资真的很不错了,有些甚至是多少人穷尽一生的天花板。
想要冲刺京东秋招,可以直接在京东招聘官网:https://campus.jd.com/,投递简历,京东提供了新星计划和实习生计划,给给为天选之子们不少机会。
京东今年校招直接就放出了 1.8 万个,直接就超越了拼多多员工总数🐶,有 1.2 万个应届岗,6000 个实习岗。
光贡献就业这一点,无 fuck 说。
还没投递的人才们,可以冲一波京东。
好啦,关于京东职级薪资,你有什么补充的呢?欢迎评论区讨论。
…
回归主题。
今天来一道京东开发考过的面试算法题,给枯燥的牛马生活加加油😂。
题目描述
平台:LeetCode
题号:290
题目名称:单词规律
给定一种规律 pattern
和一个字符串 s
,判断 s
是否遵循相同的规律。
这里的 遵循 指完全匹配,例如,pattern
里的每个字母和字符串 s
中的每个非空单词之间存在着双向连接的对应规律。
示例 1:
输入: pattern = "abba", s = "dog cat cat dog"
输出: true
示例 2:
输入: pattern = "abba", s = "dog cat cat fish"
输出: false
示例 3:
输入: pattern = "aaaa", s = "dog cat cat dog"
输出: false
提示:
1 <= pattern.length <= 300
pattern
只包含小写英文字母1 <= s.length <= 3000
s
只包含小写英文字母和' '
s
不包含任何前导或尾随空格s
中每个单词都被 单个空格 分隔
解题思路
这道题的关键是判断 pattern
中的每个字符是否和字符串 s
中的每个单词保持双向的映射关系,即字符和单词一一对应。我们可以采用两个哈希表(字典)分别记录:
pattern
中的字符到s
中单词的映射关系;s
中单词到pattern
中字符的映射关系。
如果 pattern
中某个字符已经映射到某个单词,则该字符再次出现时,必须映射到同一个单词;同理,s
中的单词也必须映射到同一个字符。如果任一方向的映射关系出现冲突,则返回 false
。
具体步骤:
- 先将字符串
s
按照空格分割成单词数组。 - 如果
pattern
和单词数组的长度不一致,直接返回false
。 - 遍历
pattern
和单词数组,使用两个字典分别记录字符和单词的对应关系,若出现不匹配则返回false
。 - 遍历完成后,若所有匹配都成立,返回
true
。
代码实现
Java 实现
import java.util.HashMap;
public class WordPattern {
public boolean wordPattern(String pattern, String s) {
String[] words = s.split(" ");
if (pattern.length() != words.length) {
return false;
}
HashMap<Character, String> charToWord = new HashMap<>();
HashMap<String, Character> wordToChar = new HashMap<>();
for (int i = 0; i < pattern.length(); i++) {
char c = pattern.charAt(i);
String word = words[i];
if (charToWord.containsKey(c)) {
// 如果字符c已经有映射但映射的单词不匹配
if (!charToWord.get(c).equals(word)) {
return false;
}
} else {
charToWord.put(c, word);
}
if (wordToChar.containsKey(word)) {
// 如果单词已经有映射但映射的字符不匹配
if (wordToChar.get(word) != c) {
return false;
}
} else {
wordToChar.put(word, c);
}
}
return true;
}
}
C++ 实现
#include <iostream>
#include <unordered_map>
#include <sstream>
#include <vector>
using namespace std;
class Solution {
public:
bool wordPattern(string pattern, string s) {
vector<string> words;
stringstream ss(s);
string word;
// 分割字符串s
while (ss >> word) {
words.push_back(word);
}
if (pattern.size() != words.size()) {
return false;
}
unordered_map<char, string> charToWord;
unordered_map<string, char> wordToChar;
for (int i = 0; i < pattern.size(); i++) {
char c = pattern[i];
string word = words[i];
if (charToWord.count(c)) {
// 如果字符c已经有映射但映射的单词不匹配
if (charToWord[c] != word) {
return false;
}
} else {
charToWord[c] = word;
}
if (wordToChar.count(word)) {
// 如果单词已经有映射但映射的字符不匹配
if (wordToChar[word] != c) {
return false;
}
} else {
wordToChar[word] = c;
}
}
return true;
}
};
Python 实现
def word_pattern(pattern: str, s: str) -> bool:
words = s.split()
if len(pattern) != len(words):
return False
char_to_word = {}
word_to_char = {}
for c, word in zip(pattern, words):
if c in char_to_word:
# 如果字符c已经有映射但映射的单词不匹配
if char_to_word[c] != word:
return False
else:
char_to_word[c] = word
if word in word_to_char:
# 如果单词已经有映射但映射的字符不匹配
if word_to_char[word] != c:
return False
else:
word_to_char[word] = c
return True
复杂度分析
- 时间复杂度:O (n),其中
n
是pattern
的长度。我们遍历了pattern
和s
中的单词。 - 空间复杂度:O (n),我们使用了两个哈希表来存储
pattern
中字符和s
中单词的映射关系。
ending
你好呀,我是苍何。是一个每天都在给自家仙人掌讲哲学的执着青年,我活在世上,无非想要明白些道理,遇见些有趣的事。倘能如我所愿,我的一生就算成功。共勉 💪
点击关注下方账号,你将感受到一个朋克的灵魂,且每篇文章都有惊喜。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉