关闭
当前搜索:

TensorBoard 出现 No scalar data was found

前段时间在学习使用Tensorboard的时候,发现无法显示,提示No scalar data was found。多次检查代码后发现无异常,日志文件也正常生成,这就很奇怪了。在这里,列出网上查到的几种解决方案: 是否使用了谷歌浏览器?经实验,360浏览器是不能显示的,需要切换到Chrome浏览器 日志文件目录是否包含中文字符?包含中文字符的路径是不能够被识别的,要转化为全英文路径 将cmd的默认路...
阅读(4) 评论(0)

Tensorflow1.4.0实现条件随机场(CRF)

关于TensorFlow实现CRF的方法我在网上找了很久也没有找到很合适的,目前最多关注的是自己写出来的CRF,比较复杂。在翻阅TensorFlow文档的时候偶然间发现TensorFlow1.4.0版本已经实现了CRF,并找到了官方例程,实现简单,在这里跟大家分享一下import numpy as np import tensorflow as tf# 参数设置 num_examples = 10...
阅读(133) 评论(0)

TensorFlow实现用于图像分类的卷积神经网络(代码详细注释)

这里我们采用cifar10作为我们的实验数据库。 首先下载TensorFlow Models库,以便使用其中提供的CIFAR-10数据的类。git clone https://github.com/tensorflow/models.git cd models/tutorials/image/cifar10下面开始构建CNN网络import cifar10 import cifar10_input...
阅读(113) 评论(0)

tensorflow 中的reduction_indices

在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_sum等函数,在函数中,有一个reduction_indices参数,表示函数的处理维度,直接上图,一目了然: 需要注意的一点,在很多的时候,我们看到别人的代码中并没有reduction_indices这个参数,此时该参数取默认值None,将把input_tensor降到0维,也就是一个数。转载:http:...
阅读(43) 评论(0)

词法分析之Bi-LSTM-CRF框架

词法分析是NLP的一项重要的基础技术,包括分词、词性标注、实体识别等,其主要算法结构为基于Bi-LSTM-CRF算法体系,下面对Bi-LSTM-CRF算法体系进行介绍。引言首先抛开深层的技术原因,来从宏观上看一下为什么LSTM(Bi-LSTM)后接CRF效果会好。 首先引用一篇英文文献关于这个问题的介绍: For sequence labeling (or general structured...
阅读(182) 评论(0)

AliNLP架构

AliNLP 自然语言技术平台阿里AliNLP系统架构图 1. 词法分析(分词、词性、实体): - 算法:基于Bi-LSTM-CRF算法体系,以及丰富的多领域词表 2. 句法分析(依存句法分析、成分句法分析): - 算法:Shift-reduce,graph-based,Bi-LSTM - 应用:资讯搜索、评价情感分析 3. 情感分析(情感对象、情感属性、情感属性关联): - 算法:情...
阅读(5715) 评论(0)

衡量文档相似性的一种方法-----词移距离 Word Mover's Distance

问题的提出假如现在有一个任务,是判断两段文本之间的相似性,那我们应该怎么做呢?一个很自然的想法是用word2vec对两段文本的词向量化,然后再利用欧氏距离或者余弦相似性进行求解。不过这种方法有着致命的缺陷,即无法从文档整体上来考虑相似性,仅仅是基于词,这就造成了很大的信息缺失问题,下面要介绍的这种方法可以从文档整体上来考虑两个文档之间的相似性,这种技术称为词移距离(WMD)。词移距离(WMD)究竟什...
阅读(130) 评论(0)

条件随机场(CRF)

本文是结合李航《统计学习方法》以及互联网资料整理得出,感谢各位作者的贡献。 - 是判别模型 - 假设输出随机变量构成马尔科夫随机场 - 标注问题—>线性链条件随机场—>由输入序列对输出序列预测的判别模型—>对数线性模型概率无向图模型 概率无向图模型又称马尔科夫随机场,是一个可以由无向图表示的联合概率分布 模型定义 图:由结点vv的集合VV和边ee的集合EE构成,G=(V,E)G=(V,E) 概...
阅读(155) 评论(0)

XGBoost原理

本文大量参考雪伦大佬的博客 以及wepon大佬的ppt,在此表示感谢!目标函数XGBoost目标函数的定义:L(ϕ)=∑il(y^i,yi)+∑kΩ(fk)whereΩ(f)=γT+12λ||w||2 \mathcal{L}(\phi)=\sum_il(\hat y_i,y_i)+\sum_k\Omega(f_k) \\where\quad\Omega(f)=\gamma T+ \dfrac{1}{...
阅读(138) 评论(0)

局部线性嵌入(LLE)

1、介绍本文参考:http://www.cnblogs.com/pinard/p/6266408.html(1)概述LLE属于流形学习(Manifold Learning)的一种,通常流形理解起来比较抽象,在LLE里,我们可以简单的将流形看做一个不闭合的曲面,类似于下图: 而我们的目的就是将其展开到低维,在上图也就是展开到二维,同时数据的结构特征要能够得到最大程度的保持,这个过程就像两个人将流行曲...
阅读(242) 评论(0)

降维算法(LASSO、PCA、聚类分析、小波分析、线性判别分析、拉普拉斯特征映射、局部线性嵌入)

1、LASSOLASSO全称least absolute shrinkage and selection operator,本身是一种回归方法。与常规回归方法不同的是,LASSO可以对通过参数缩减对参数进行选择,从而达到降维的目的。说到LASSO,就不得不说岭回归,因为LASSO就是针对岭回归不能做参数选择的问题提出来的。关于岭回归的解释,可以参照我的另一篇文章预测数值型数据:回归(二),这里不再赘...
阅读(287) 评论(0)

拉普拉斯特征映射(Laplacian Eigenmaps)

1、介绍拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系。也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构。 本文参考http://blog.csdn.net/xb...
阅读(557) 评论(5)

线性判别分析LDA(Linear Discriminant Analysis)

1、简介大家熟知的PCA算法是一种无监督的降维算法,其在工作过程中没有将类别标签考虑进去。当我们想在对原始数据降维后的一些最佳特征(与类标签关系最密切的,即与yy相关),这个时候,基于Fisher准则的线性判别分析LDA就能派上用场了。注意,LDA是一种有监督的算法。本文参考“JerryLead”的文章线性判别分析(Linear Discriminant Analysis)(一)及线性判别分析(Li...
阅读(115) 评论(0)

常见二叉树基础算法汇总

1、二叉树的深度class Solution { public: int TreeDepth(TreeNode* pRoot) { if(!pRoot){ return 0; } int a = 1+TreeDepth(pRoot->left); int b = 1+TreeDepth(pRoot...
阅读(115) 评论(0)

边缘分布

最近在调研域自适应学习的时候,接触到了分布假设,即源域与目标域的边缘分布和条件分布均不同。条件分布由于用得比较多,大家应该比较熟知;而边缘分布用的比较少,在这里记录下边缘分布的定义,备忘。边缘分布的定义1、定义 1  设F(x,y)F(x,y)为二维随机变量 (X,Y)(X,Y) 的联合分布函数,F(x,y)=P{X≤x,Y≤y}F(x,y)=P\{X\leq x, Y\leq y\},分别称...
阅读(403) 评论(0)
66条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:118244次
    • 积分:1765
    • 等级:
    • 排名:千里之外
    • 原创:55篇
    • 转载:11篇
    • 译文:0篇
    • 评论:102条
    文章分类
    最新评论