凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization

原创 2015年07月08日 20:04:05

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写一系列关于ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法的内容。

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization

本文地址:http://blog.csdn.net/shanglianlm/article/details/46807865

5- 约束凸优化(Constrained Convex Optimization)

通用的约束凸优化问题为
这里写图片描述
其中 xRn, f 和 C 是凸的。改写成 ADMM 形式
这里写图片描述
其中 g 是 C 的指示函数。增广 Lagrangian 为
这里写图片描述
因此有
这里写图片描述
x-update 涉及最小化 f 加 一个凸二次函数;z-update 是一个 C 上的 Euclidean 映射。这里目标函数 f 不要求光滑。

As with all problems where the constraint is x − z = 0, the primal and dual residuals take the simple form
这里写图片描述

5-1 凸可行性(Convex Feasibility)

5-1-1 交替投影法(Alternating Projections)

找到两个闭合非空凸集的交集中的一个点的常用方法是 alternating projections 算法
这里写图片描述
其中 ΠCΠD 分别是 集合 C 和 D 上的 Euclidean 映射。
原问题写成 ADMM 形式,
这里写图片描述
其中 f 和 g 分别是 C 和 D 的指示函数(indicator function)。
ADMM 的缩放形式(scaled form)
这里写图片描述
x- 和 z- 步都涉及在一个凸集上的映射。
这里写图片描述

5-1-2 平行投影法(Parallel Projections)

扩展到找到 N 个闭合凸集 A1,...,AN 交错集上的点,
这里写图片描述
接着有
这里写图片描述
第一和三步可以并行。

5-2 线性和二次规划(Linear and Quadratic Programming)

标准的二次规划 quadratic program (QP) 形式为
这里写图片描述
表示成 ADMM 形式
这里写图片描述
其中
这里写图片描述
g 是非负象限 Rn+ 的指示函数。
ADMM 的缩放形式(scaled form)
这里写图片描述
x-update 是一个有优化条件的等式约束最小二次问题(an equality-constrained least squares problem with optimality conditions)。
这里写图片描述

参考或延伸材料:
[1]Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
[2] 凸优化讲义
[3] A Note on the Alternating Direction Method of Multipliers

版权声明:本文为博主原创文章,欢迎转载,转载请注明出处。

队列的应用 之 M/D/1队列

      说明:参考内容 :http://introcs.cs.princeton.edu/java/43stack/        很有幸结识排队行业,由于工作的原因,平时会多多关注排队,关注排队...
  • jertvip
  • jertvip
  • 2011年06月24日 01:33
  • 4295

M/M/1 队列系统模型

M/M/1队列系统是最基本也是最重要的一种队列系统,该系统是一个单队列单服务器系统,其中M代表Markovian。M/M/1队列系统包含以下几个部分:     1. 请求到达时间满足满足Passion...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之六: L1-Norm Problems

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之四: General Patterns

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之四: General Patterns 本文地址:http://bl...

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之三:ADMM 本文地址:http://blog.csdn.net/sh...

凸优化(Convex Optimization)是什么?

”凸优化“ 是指一种比较特殊的优化,是指求取最小值的目标函数为凸函数的一类优化问题。其中,目标函数为凸函数且定义域为凸集的优化问题称为无约束凸优化问题。而目标函数和不等式约束函数均为凸函数,等式约束函...

boyd 交替方向法讲义 ADMM

  • 2014年07月10日 08:42
  • 776KB
  • 下载

凸优化(Convex Optimization)浅析

本文对凸优化进行了简单介绍,转载自凸优化(Convex Optimization)浅析——博客园kemaswill.对原作者的付出表示感谢.版权归原作者所有....
  • clheang
  • clheang
  • 2015年04月18日 11:56
  • 3845
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization
举报原因:
原因补充:

(最多只允许输入30个字)