关闭

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization

标签: direction优化算法
1741人阅读 评论(0) 收藏 举报
分类:

最近开始对凸优化(convex optimization)中的ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法开始感兴趣,接下来我会写一系列关于ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法的内容。

凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法系列之五: Constrained Convex Optimization

本文地址:http://blog.csdn.net/shanglianlm/article/details/46807865

5- 约束凸优化(Constrained Convex Optimization)

通用的约束凸优化问题为
这里写图片描述
其中 xRn, f 和 C 是凸的。改写成 ADMM 形式
这里写图片描述
其中 g 是 C 的指示函数。增广 Lagrangian 为
这里写图片描述
因此有
这里写图片描述
x-update 涉及最小化 f 加 一个凸二次函数;z-update 是一个 C 上的 Euclidean 映射。这里目标函数 f 不要求光滑。

As with all problems where the constraint is x − z = 0, the primal and dual residuals take the simple form
这里写图片描述

5-1 凸可行性(Convex Feasibility)

5-1-1 交替投影法(Alternating Projections)

找到两个闭合非空凸集的交集中的一个点的常用方法是 alternating projections 算法
这里写图片描述
其中 ΠCΠD 分别是 集合 C 和 D 上的 Euclidean 映射。
原问题写成 ADMM 形式,
这里写图片描述
其中 f 和 g 分别是 C 和 D 的指示函数(indicator function)。
ADMM 的缩放形式(scaled form)
这里写图片描述
x- 和 z- 步都涉及在一个凸集上的映射。
这里写图片描述

5-1-2 平行投影法(Parallel Projections)

扩展到找到 N 个闭合凸集 A1,...,AN 交错集上的点,
这里写图片描述
接着有
这里写图片描述
第一和三步可以并行。

5-2 线性和二次规划(Linear and Quadratic Programming)

标准的二次规划 quadratic program (QP) 形式为
这里写图片描述
表示成 ADMM 形式
这里写图片描述
其中
这里写图片描述
g 是非负象限 Rn+ 的指示函数。
ADMM 的缩放形式(scaled form)
这里写图片描述
x-update 是一个有优化条件的等式约束最小二次问题(an equality-constrained least squares problem with optimality conditions)。
这里写图片描述

参考或延伸材料:
[1]Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
[2] 凸优化讲义
[3] A Note on the Alternating Direction Method of Multipliers

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:131000次
    • 积分:3465
    • 等级:
    • 排名:第9601名
    • 原创:111篇
    • 转载:57篇
    • 译文:1篇
    • 评论:13条
    博主描述
    曾厝垵软件职业技术学院

    新浪微博:mingo_敏
    博客专栏
    文章分类