交替方向乘子法(Alternating Direction Method of Multipliers,简称ADMM)

交替方向乘子法(Alternating Direction Method of Multipliers,简称ADMM)是一种求解具有约束的优化问题的迭代算法,特别适用于解决大规模优化问题,特别是那些可以分解为子问题的凸优化问题

ADMM结合了拉格朗日乘子法分裂贝尔曼算法的优点,通过分解原问题为一系列较小的子问题,使得求解过程更加高效和容易管理。

ADMM的原理

ADMM主要用于解决以下形式的优化问题:
minimize f ( X ) + g ( Z ) subject to A X + B Z = C \begin{aligned} \text{minimize} & \quad f(X) + g(Z) \\ \text{subject to} & \quad AX + BZ = C \end{aligned} minimizesubject tof(X)+g(Z)AX+BZ=C
其中, f ( X ) f(X) f(X) g ( Z ) g(Z) g(Z)是两个凸函数 A X + B Z = C AX + BZ = C AX+BZ=C等式约束, A A A B B B C C C是给定的矩阵。

ADMM的迭代步骤

ADMM的迭代步骤可以概括为以下三个部分:

  1. X更新:在固定 Z Z Z的情况下,求解以下子问题以更新 X X X
    X k + 1 = arg ⁡ min ⁡ X ( f ( X ) + ρ 2 ∥ A X + B Z k − C + Y k ∥ 2 2 ) X^{k+1} = \arg\min_X \left( f(X) + \frac{\rho}{2} \| AX + BZ^k - C + Y^k \|_2^2 \right) Xk+1=argXmin(f(X)+2ρAX+BZkC+Yk22)
    这里, Y k Y^k Yk上一步迭代的拉格朗日乘子 ρ \rho ρ惩罚系数。

  2. Z更新:在固定 X X X的情况下,求解以下子问题以更新 Z Z Z
    Z k + 1 = arg ⁡ min ⁡ Z ( g ( Z ) + ρ 2 ∥ A X k + 1 + B Z − C + Y k ∥ 2 2 ) Z^{k+1} = \arg\min_Z \left( g(Z) + \frac{\rho}{2} \| AX^{k+1} + BZ - C + Y^k \|_2^2 \right) Zk+1=argZmin(g(Z)+2ρAXk+1+BZC+Yk22)

  3. 拉格朗日乘子更新:更新拉格朗日乘子 Y Y Y
    Y k + 1 = Y k + ρ ( A X k + 1 + B Z k + 1 − C ) Y^{k+1} = Y^k + \rho \left( AX^{k+1} + BZ^{k+1} - C \right) Yk+1=Yk+ρ(AXk+1+BZk+1C)

ADMM的增广拉格朗日函数

ADMM是基于增广拉格朗日函数(augmented Lagrangian function)的,该函数在原拉格朗日函数的基础上加上了一个二次项,以惩罚违反约束的程度:
L ρ ( X , Z , Y ) = f ( X ) + g ( Z ) + Y ⊤ ( A X + B Z − C ) + ρ 2 ∥ A X + B Z − C ∥ 2 2 L_\rho(X, Z, Y) = f(X) + g(Z) + Y^\top (AX + BZ - C) + \frac{\rho}{2} \| AX + BZ - C \|_2^2 Lρ(X,Z,Y)=f(X)+g(Z)+Y(AX+BZC)+2ρAX+BZC22

ADMM的收敛性

ADMM的收敛性要求原问题的函数 f f f g g g凸函数,并且满足一定的条件。ADMM的迭代过程在满足这些条件下,能够收敛到原问题的解。

ADMM在子空间聚类中的应用

在子空间聚类中,ADMM被用于求解复杂的优化问题,如低秩表示或在多视图数据上进行鲁棒聚类。

例如,在优化问题(3.5)中,ADMM被用于求解矩阵 A ( v ) A(v) A(v) B ( v ) B(v) B(v) Z ( v ) 1 Z(v)_1 Z(v)1 Z ( v ) 2 Z(v)_2 Z(v)2 E ( v ) E(v) E(v),这些矩阵代表了数据的不同表示或误差项。

ADMM的优点

  • 并行性:ADMM允许在更新 X X X Z Z Z时进行并行计算,这对大规模数据集的处理非常有利。
  • 易于实现:ADMM的迭代步骤相对简单,易于编程实现。
  • 广泛适用性:ADMM适用于各种类型的优化问题,包括线性、非线性、凸和非凸问题。

ADMM的局限性

  • 收敛速度:对于某些问题,ADMM的收敛速度可能较慢。
  • 参数选择:惩罚系数 ρ \rho ρ的选择对算法的性能有显著影响,不当的选择可能导致算法收敛缓慢或不收敛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值