理解支持向量机(二)核函数

由之前对核函数的定义(见统计学习方法定义7.6):
设χ是输入空间(欧氏空间或离散集合),Η为特征空间(希尔伯特空间),如果存在一个从χ到Η的映射

φ(x): χ→Η
使得对所有的x,z∈χ,函数Κ(x,z)=φ(x)∙φ(z),
则称Κ(x,z)为核函数,φ(x)为映射函数,φ(x)∙φ(z)为x,z映射到特征空间上的内积。
由于映射函数十分复杂难以计算,在实际中,通常都是使用核函数来求解内积,计算复杂度并没有增加,映射函数仅仅作为一种逻辑映射,表征着输入空间到特征空间的映射关系。例如:
设输入空间χ: ^3,
X=(x_(1,) x_2,x_3) , z=(z_(1,) z_2,z_3),
映射函数φ(x)= < X,X > = 这里写图片描述
核函数Κ(x,z)= 〖(<x,z>)〗^2
那么,取两个样例x=(1,2,3),z=(4,5,6)分别通过映射函数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值