机器学习之SVM支持向量机与核函数(吴恩达机器学习)

1. 支持向量机Support Vector Machines

1.1 介绍

在分类问题中,除了线性的逻辑回归模型和非线性的深度神经网络外,我们还可以应用一种被广泛应用于工业界和学术界的模型—支持向量机,简称SVM,与逻辑回归和神经网络相比,支持向量机在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。

尽管现在深度学习十分流行,了解支持向量机的原理,对想法的形式化、简化、及一步步使模型更一般化的过程,及其具体实现仍然有其研究价值。另一方面,支持向量机仍有其一席之地。相比深度神经网络,支持向量机特别擅长于特征维数多于样本数的情况,而小样本学习至今仍是深度学习的一大难题。
关于支持向量机的简单概念和定义,请参考这篇文章: https://www.zhihu.com/question/21094489/answer/190046611
更详细地了解和推导SVM,请参考以下几篇文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值