向量类的实现

向量在实现图形学的算法中有很重要的位置 ,下面是 用C++写的一个向量类,实现了一些 基本的 向量操作。

代码清单:

gvector3.h

#ifndef GVECTOR3_H
#define GVECTOR3_H
#include <iostream>
#include <cmath>
using namespace std;


class GVector3
{

public:
    float x;
    float y;
    float z;
     // 缺省构造函数
    GVector3();
    ~GVector3();
     // 用户构造函数
    GVector3(float posX, float posY, float posZ);
    //输出向量信息
    void getInfo();
    //矢量加法
    GVector3 operator+(GVector3 v);
    //矢量减法
    GVector3 operator-(GVector3 v);
    //数乘
    GVector3 operator*(float n);
    //数除
    GVector3 operator/(float n);
    //向量点积
    float dotMul(GVector3 v2);
    //向量叉乘
    GVector3 crossMul(GVector3 v2);
    //获取矢量长度
    float getLength();
    //向量单位化
    void Normalize();
};

#endif // GVECTOR3_H

gvector.cpp

#include "gvector3.h"

GVector3::GVector3()
{
}
GVector3::~GVector3()
{
}
GVector3::GVector3(float posX, float posY, float posZ)
{
    x=posX;
    y=posY;
    z=posZ;
}

GVector3 GVector3::operator+(GVector3 v)
{
    return GVector3(x+v.x,v.y+y,v.z+z);
}
GVector3 GVector3::operator-(GVector3 v)
{
    return GVector3(x-v.x,y-v.y,z-v.z);
}
GVector3 GVector3::operator*(float n)
{
    return GVector3(x*n,y*n,z*n);
}
GVector3 GVector3::operator/(float n)
{
    return GVector3(x/n,y/n,z/n);
}
void GVector3::getInfo()
{
    cout<<"x:"<<x<<" y:"<<y<<" z:"<<z<<endl;
}
float GVector3::dotMul(GVector3 v2)
{
    return (x*v2.x+y*v2.y+z*v2.z);
}
GVector3 GVector3::crossMul(GVector3 v2)
{
 GVector3 vNormal;
  // 计算垂直矢量
  vNormal.x = ((y * v2.z) - (z * v2.y));
  vNormal.y = ((z * v2.x) - (x * v2.z));
  vNormal.z = ((x * v2.y) - (y * v2.x));
  return vNormal;
}
float GVector3::getLength()
{
    return  (float)sqrt(x*x+y*y+z*z);
}
void GVector3::Normalize()
{
    float length=getLength();
    x=x/length;
    y=y/length;
    z=z/length;
}

测试文件:

#include <iostream>
#include "gvector3.h"
using namespace std;

int main()
{
    GVector3 v1,v2,v3;
    v1=GVector3(1.0,2.0,5.0);
    v2=GVector3(3.0,1.0,6.0);
    v1=v1-v2;
    v1.getInfo();
    v2=v2/2;
    v2.getInfo();
    v3=v1.crossMul(v2);
    v3.getInfo();
    float a=v1.dotMul(v2);
    cout<<"v1 dotMul v2:"<<a<<endl;
    cout<<"v3.Length:"<<v3.getLength()<<endl;
    v3.Normalize();
    cout<<"v3 After nomarlize:"<<endl;
    v3.getInfo();
    cout << "Hello world!" << endl;
    return 0;
}


注意编译命令是:g++  main.cpp gvector3.h gvector3.cpp -o 1

运行结果:



向量类(综合型题目) (1)创建C# 控制台应用程序L4_2。 (2)在程序中创建一个向量类CzVector,在其中定义一个double []类型的私有字段_values,用于维护向量的各个元素值。 (3)为CzVector定义三个公有属性Length、Sum和Prod,分别用于返回向量的长度、向量所有元素的和以及向量所有元素的积。 (4)在CzVector中定义一个索引函数,用于获取或设置各个元素的值。 (5)为CzVector定义两个构造函数,一个根据指定长度对向量进行初始化(向量各元素取默认值0),另一个由指定的数组来构造向量并设置各元素的值。 (6)利用操作符重载来实现向量加法、减法和乘法。这三种运算均要求两个向量的长度相等。设向量α=(a1,a2,…an) ,β=(b1,b2,…bn),那么α+β=(a1+b1,a2+b2,….,an+bn),减法与之类似,而α*β=a1*b1+a2*b2+….+an*bn)。另外,一个向量还可以单独乘以一个系数(向量加法的重载形式),此时,λ*α=(λ*a1, λ*a2,…λ*an) 。以加法操作符重载为例,参考源代码如下: public static CzVector operator +(CzVector v1,CzVector v2) { if(v1.Length!=v2.Length) return null; CzVector result=new CzVector(v1.Length); for(int i=0;i<v1.Length;i++) result [i]=v1[i]+v2[i]; return result; } (7)类似的,利用操作符重载来判断两个向量是否相等。向量相等的条件是:两个向量的长度相等,且各个位置上的对应元素值也相等。 (8)为CzVector定义一个ConsoleOutput方法,用于在控制台一行输出向量的所有元素,其之间以空格分割。 (9)在程序主方法中随机定义几个向量对象,并测试其运算结果。参考源代码如下: static void Main() { CzVector v1=new CzVector(1,-5,9,6); CzVector v2=new CzVector(0,1,2,3); Console.Write(“v1= “); v1.ConsoleOutput(); Console.Write(“v2= “); v2.ConsoleOutput(); CzVector v3=v1+v2; Console.Write(“v1+v2= “); v3.ConsoleOutput(); CzVector v4=v1-v2; Console.Write(“v1-v2= “); v4.ConsoleOutput(); Console.Write(“3*(v1+v2)= “); (v3*3).ConsoleOutput(); Console.Write(“v1*v2= “{0}”,v1*v2); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值