周志华《机器学习》课后习题解答系列(六):Ch5.6 - BP算法改进

本文介绍了BP算法的改进方法,包括附加动量项和自适应学习率。通过Python实现,对比了固定学习率和自适应学习率在训练神经网络时的效果,表明动态学习率能提升收敛速度。实验基于IRIS数据集,展示了不同学习率对模型训练的影响,并分析了动态学习率的优化潜力。
摘要由CSDN通过智能技术生成

相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.

5.6 BP算法改进

这里写图片描述

注:本题程序基于Python实现(这里查看完整代码和数据集)。

1. 方法设计

传统的BP算法改进主要有两类:

  • 启发式算法:如附加动量法,自适应算法。
  • 数值优化算法:如共轭梯度法、牛顿迭代法、Levenberg-Marquardt法。

这里我们首先采用附加动量实现基本的方法改进。然后分析算法的不足,设计面向学习率的自适应机制来改进,实现基于动态自适应学习速率的BP算法改进。

(1) 附加动量项

这是一种广泛用于加速梯度下降法收敛的优化方法,其核心思想是:在梯度下降搜索时,若当前梯度下降与之前梯度下降方向相同,则加速搜索,反之则减速搜索。

参考书p103(式5.11),标准BP算法的参数更新项为:

∆ω(t) = ηg(t)

式中,∆ω(t)为第t次迭代的参数调整量,η为学习率,g(t)为第t次迭代所计算出的梯度。

在添加动量项之后,基于梯度下降的参数更新项为:

∆ω(t) = η[(1-μ)g(t)+μg(t-1)]

始终,μ为

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值