CRM发展的八大趋势

2013值得关注的八大CRM发展趋势

   客户关系管理服务供应商及行业分析师做出预测,旨在讨论哪些CRM发展趋势将进一步加深、IT专业人士又应关注哪些新的业界动向。
   去年,客户关系管理系统领域中风头最劲、最值得关注及尝试的两大内容即社交型CRM与移动型CRM。为了弄清楚二者能否在CRM今后的发展道路中继续保持先锋地位以及另有哪些企业机构值得关注的发展走向,我们总结出了2013年最值得大家留意及实践的八大CRM发展趋势。
   1.基于云的CRM服务仍将获得广泛关注
   “原先的CRM其实就是企业内部讨论客户的相关信息,”亿客CRM产品总监蔡巍指出。然而,“CRM系统中信息的头号重要来源已经逐渐开始游离于企业之外,当下社区网络及其它外部来源才是信息的真正集散地。”基于云的应用程序在捕捉这类信息方面可谓得心应手,并能够方便地将其转化为具备操作性的实用情报,蔡巍解释道。因此我们现在已经不必“再花大价钱打造基础设施,借以连接云平台并挖掘客户资料;基于云的CRM系统能够更加高效地完成这一工作,”他总结道。
   2. 界面问题是大事
   “应用程序的易用性当下正逐渐成为企业内部极为重要的一大问题,CRM类软件也同样遵循此理,”Sword Ciboodle公司市场战略部门副总裁Mitch Lieberman如是说,这是一家全球化客户互动解决方案供应企业。“用户们对于自己在设备上的工作环境相当挑剔,因为我们每天所面对的显示器实在是史无前例地多,”除了传统的台式机和笔记本电脑,iPad和智能手机都可能成为我们的工作设备。另外,用户们肯定不希望硬记像ALT Tab这样的快捷键组合,每个人都想轻松愉快地搞定工作。“数据必须通过用户界面才能为我们所使用,这是前提,”他表示。因此在选择(或使用)CRM系统时,应当确保该软件能够同时为传统及移动平台所访问及理解——同时为其量身打造的友善用户界面也不可或缺。
   3. CRM将成为蕴含所有信息的数据集散地
   随着企业与客户之间互动方式的持续增多,CRM系统必将发挥在构建坚实合作关系方面发挥更大的作用,Batchbook公司总裁Pamela O’Hara如是说,这是一家社交型CRM解决方案供应商。“采用高效CRM体系的企业将从中获益,因为他们能够借此将各个原本松散的环节贯穿起来聚于一处,并与每位客户建立起紧密的合作关系,”O’Hara指出。此外她还认为,通过客户数据的集中化,“企业将有能力为客户提供更有针对性、更加高质量的服务。”
   4. CRM与其它关键性业务系统相整合
   “企业买家当然希望自己采购的CRM能与ERP、电子商务及专业服务自动化应用程序完美契合,以获得集成度更强、运作效率更高的业务流程体系,”NetSuite公司产品营销部门高级总监Paul Turner表示。“企业机构希望将整个业务处理过程加以整合,再以这种宏观视角与客户互动,同时他们更希望报告能够更加全面、而不再被详细的职能划分切割得支离破碎。毫无疑问,供应商们要做的正是迎合上述需求。”但他警告称,决策者必须提防那些各自发展经历不同、后期被硬性整合在一起的应用程序。“最好是寻找一套中心应对由上到下各类工作的系统,并把一切任务都只交给它——使用单一解决方案是保证效益最大化的不二法门,”他补充道。
   5. 灵活性不容小觑
   “由于用户们对于交付模式、接口、数据方案以及CRM中的其它技术因素越来越熟悉,因此他们自然会将这些参数作为选购软件产品的重要指标之一,”亿客CRM公司研发总监兼CTO 张博指出,这是一家在线CRM系统服务商。“这将促使CRM应用程序在设计上更易于实现集成化,用户也可以方便地通过定制进行有针对性的升级;同时也会使那些不甘自家SaaS(软件即服务)沦为平庸的供应商苦心孤诣,争相拿出丰富的客户使用方案来。”为此,Oram认为自定义软件称得上大势所趋,因为它允许用户更方便地对软件做出变更及定制。综上所述,2013年中自定义将成为冲击传统按需CRM模型的有力武器。
   6. CRM将在社交化道路上渐行渐远
   在过去一年中获得无比辉煌的战绩之后,社交网络将成为对于消费者极具决策影响力的重要组成部分,O’Hara表示。因此,CRM软件供应商“将继续将社交要素纳入其产品当中,以使得企业能够更好地了解细微的市场发展趋势,进而在开展宣传及营销工作时更准确地把握自身的生态系统定位,”她声称。“在社交网络的辅助下,CRM将在自身平台上为业务团队带来更好的营销及技术支持渠道。”
   7. 移动应用程序将为面向客户的使用者带来前所未有的便利
   “在2013年中,CRM销售管理软件在移动组件方面的强大程度将大大影响其销售业绩的好坏,”Oram认为。“拥有强大移动组件的供应商将获得更加显著的市场竞争力优势,而大多数厂商也将加入到强化本地客户端与安全性的角逐中来。”
   Forrester研究机构副总裁兼首席分析师William Band对此也表示赞同。“移动化已经成为赢得市场的关键性因素,”他指出。“尤其是在像销售领域这样直接面向客户并进行客户服务活动的行业,如果能够让现场员工使用手持移动设备,那么整体业务水平无疑将得到质的飞跃;这也正是当下业界发展的主流趋势。”
   8. 让客户的声音更多地融入产品
   “企业机构将越来越多地尝试根据使用者的声音对业务处理方式加以改进,并协助办公室中的员工们更好地了解现场客户的要求,”Band预测道。“如果能够将调查结果、客户访问、社交情感数据等详细内容反馈给企业机构中的每位员工,他们无疑能够更好地理解自己的营销方式对于客户的确切影响。”

交流email: ssdcrm@163.com   欢迎来电探讨CRM的发展趋势!

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值