计算机视觉 - 相关性建模

相关性建模方法在计算机视觉领域里得到了广泛应用。比如,在目标检测领域,该类方法主要考虑像素间的空间领域关系;在视频建模中,考虑帧之间的相关性;在细腻度图像分类中,考虑类别标签间的结构相关性;该类方法在样本不均衡下的模型建立中同样适用,充分挖掘类别间的相关部分等等。下面主要对相关方法进行一个简单汇总与总结,给自己的后续研究提供思路。

1. 细腻度图像分类

该文名称为Fine-grained Image Classification by Exploring Bipartite-Graph Labels,发表在CVPR 2016上。概括来说,该文基于CNN架构,在最后的全连接层(Soft Max)融入二分图标签(BGL, bipartite-graph labels),以此解决了细腻度图像分类中的两大难题:1) 由于细腻度类别标签数的有限性造成CNN模型的过拟合;2) 细腻度类别间的相似性很难学习辨别性的特征表示。所谓二分图标签(BGL),就是作者事先定义的粗略标签,可理解为对细腻度标签根据不同性质的一系列分组;也可看着是对细腻度标签的不同属性划分。比如,论文中举了一个关于餐馆-菜品的例子,如下图:
这里写图片描述
其中,中间一列为3个细腻度标签,边上的Graph1-3为预定义的粗略标签。在Graph 2中有两个类别:加蒜与否;此粗标签能将细腻度类别划分为两组。很明显,定义的一系列粗略标签与细腻度标签具有层次结构。假如现在有了一系列预定义的粗标签,那么在CNN模型的最后一层中,无非是结合细腻度标签,在Soft Max上进行扩展并学习相应的权重参数。下面来看看论文的形式化过程。

首先,我们看看只有细腻度标签在Soft Max上的形式化。假设给定训练数据集 { x,y}χ xRd 为CNN模型中Soft Max层的输入特征表示, yRK 为细腻度类别; W 为待训练的权重参数, f=WTxRK 为输入特征 x K 个细腻度类别上产生的分数。那么我们最大化的对数似然函数为:

maxW{ x,y}χlnp(y|x,W)

其中, y 服从多元伯努力分布,且定义
p(y|x,W)=k=1Kexp(fk)Kj=1exp(fj)yk

上式对 W 的优化求解可以采用很多优化方法。现在我们考虑融入进 M 种类型的粗略标签 { ym}Mm=1 ,而每一类型标签有 Km 种类别,且都会与 K 个细腻度标签建立关联。那么有了粗略标签,我们定义的优化目标函数中最大的难点在于如何定义联合概率 p(y,{ym}Mm=1|x,W,{Wm}Mm=1) 。为了直观的理解,我们以上图为例进行说明,可知 K=3 M=3 ,且
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值